Alternatives to Azure Data Science Virtual Machines

Compare Azure Data Science Virtual Machines alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Azure Data Science Virtual Machines in 2025. Compare features, ratings, user reviews, pricing, and more from Azure Data Science Virtual Machines competitors and alternatives in order to make an informed decision for your business.

  • 1
    Vertex AI
    Build, deploy, and scale machine learning (ML) models faster, with fully managed ML tools for any use case. Through Vertex AI Workbench, Vertex AI is natively integrated with BigQuery, Dataproc, and Spark. You can use BigQuery ML to create and execute machine learning models in BigQuery using standard SQL queries on existing business intelligence tools and spreadsheets, or you can export datasets from BigQuery directly into Vertex AI Workbench and run your models from there. Use Vertex Data Labeling to generate highly accurate labels for your data collection. Vertex AI Agent Builder enables developers to create and deploy enterprise-grade generative AI applications. It offers both no-code and code-first approaches, allowing users to build AI agents using natural language instructions or by leveraging frameworks like LangChain and LlamaIndex.
  • 2
    Posit

    Posit

    Posit

    At Posit, our goal is to make data science more open, intuitive, accessible, and collaborative. We provide tools that make it easy for individuals, teams, and enterprises to leverage powerful analytics and gain the insights they need to make a lasting impact. From the beginning, we’ve invested in open-source software like the RStudio IDE, Shiny, and tidyverse. Because we believe in putting the power of data science tools in the hands of everyone. We develop R and Python-based tools to help you produce higher-quality analysis faster. Securely share data-science applications across your team and the enterprise. Our code is your code. Build on it. Share it. Improve people’s lives with it. Take the time and effort out of uploading, storing, accessing, and sharing your work. We love hearing about the amazing work being done with our tools around the world. And we really love sharing those stories.
  • 3
    BentoML

    BentoML

    BentoML

    Serve your ML model in any cloud in minutes. Unified model packaging format enabling both online and offline serving on any platform. 100x the throughput of your regular flask-based model server, thanks to our advanced micro-batching mechanism. Deliver high-quality prediction services that speak the DevOps language and integrate perfectly with common infrastructure tools. Unified format for deployment. High-performance model serving. DevOps best practices baked in. The service uses the BERT model trained with the TensorFlow framework to predict movie reviews' sentiment. DevOps-free BentoML workflow, from prediction service registry, deployment automation, to endpoint monitoring, all configured automatically for your team. A solid foundation for running serious ML workloads in production. Keep all your team's models, deployments, and changes highly visible and control access via SSO, RBAC, client authentication, and auditing logs.
  • 4
    cnvrg.io

    cnvrg.io

    cnvrg.io

    Scale your machine learning development from research to production with an end-to-end solution that gives your data science team all the tools they need in one place. As the leading data science platform for MLOps and model management, cnvrg.io is a pioneer in building cutting-edge machine learning development solutions so you can build high-impact machine learning models in half the time. Bridge science and engineering teams in a clear and collaborative machine learning management environment. Communicate and reproduce results with interactive workspaces, dashboards, dataset organization, experiment tracking and visualization, a model repository and more. Focus less on technical complexity and more on building high impact ML models. Cnvrg.io container-based infrastructure helps simplify engineering heavy tasks like tracking, monitoring, configuration, compute resource management, serving infrastructure, feature extraction, and model deployment.
  • 5
    AWS Deep Learning AMIs
    AWS Deep Learning AMIs (DLAMI) provides ML practitioners and researchers with a curated and secure set of frameworks, dependencies, and tools to accelerate deep learning in the cloud. Built for Amazon Linux and Ubuntu, Amazon Machine Images (AMIs) come preconfigured with TensorFlow, PyTorch, Apache MXNet, Chainer, Microsoft Cognitive Toolkit (CNTK), Gluon, Horovod, and Keras, allowing you to quickly deploy and run these frameworks and tools at scale. Develop advanced ML models at scale to develop autonomous vehicle (AV) technology safely by validating models with millions of supported virtual tests. Accelerate the installation and configuration of AWS instances, and speed up experimentation and evaluation with up-to-date frameworks and libraries, including Hugging Face Transformers. Use advanced analytics, ML, and deep learning capabilities to identify trends and make predictions from raw, disparate health data.
  • 6
    NVIDIA RAPIDS
    The RAPIDS suite of software libraries, built on CUDA-X AI, gives you the freedom to execute end-to-end data science and analytics pipelines entirely on GPUs. It relies on NVIDIA® CUDA® primitives for low-level compute optimization, but exposes that GPU parallelism and high-bandwidth memory speed through user-friendly Python interfaces. RAPIDS also focuses on common data preparation tasks for analytics and data science. This includes a familiar DataFrame API that integrates with a variety of machine learning algorithms for end-to-end pipeline accelerations without paying typical serialization costs. RAPIDS also includes support for multi-node, multi-GPU deployments, enabling vastly accelerated processing and training on much larger dataset sizes. Accelerate your Python data science toolchain with minimal code changes and no new tools to learn. Increase machine learning model accuracy by iterating on models faster and deploying them more frequently.
  • 7
    Google Cloud Deep Learning VM Image
    Provision a VM quickly with everything you need to get your deep learning project started on Google Cloud. Deep Learning VM Image makes it easy and fast to instantiate a VM image containing the most popular AI frameworks on a Google Compute Engine instance without worrying about software compatibility. You can launch Compute Engine instances pre-installed with TensorFlow, PyTorch, scikit-learn, and more. You can also easily add Cloud GPU and Cloud TPU support. Deep Learning VM Image supports the most popular and latest machine learning frameworks, like TensorFlow and PyTorch. To accelerate your model training and deployment, Deep Learning VM Images are optimized with the latest NVIDIA® CUDA-X AI libraries and drivers and the Intel® Math Kernel Library. Get started immediately with all the required frameworks, libraries, and drivers pre-installed and tested for compatibility. Deep Learning VM Image delivers a seamless notebook experience with integrated support for JupyterLab.
  • 8
    Anaconda

    Anaconda

    Anaconda

    Empowering the enterprise to do real data science at speed and scale with a full-featured machine learning platform. Spend less time managing tools and infrastructure, so you can focus on building machine learning applications that move your business forward. Anaconda Enterprise takes the headache out of ML operations, puts open-source innovation at your fingertips, and provides the foundation for serious data science and machine learning production without locking you into specific models, templates, or workflows. Software developers and data scientists can work together with AE to build, test, debug, and deploy models using their preferred languages and tools. AE provides access to both notebooks and IDEs so developers and data scientists can work together more efficiently. They can also choose from example projects and preconfigured projects. AE projects are automatically containerized so they can be moved between environments with ease.
  • 9
    GPUonCLOUD

    GPUonCLOUD

    GPUonCLOUD

    Traditionally, deep learning, 3D modeling, simulations, distributed analytics, and molecular modeling take days or weeks time. However, with GPUonCLOUD’s dedicated GPU servers, it's a matter of hours. You may want to opt for pre-configured systems or pre-built instances with GPUs featuring deep learning frameworks like TensorFlow, PyTorch, MXNet, TensorRT, libraries e.g. real-time computer vision library OpenCV, thereby accelerating your AI/ML model-building experience. Among the wide variety of GPUs available to us, some of the GPU servers are best fit for graphics workstations and multi-player accelerated gaming. Instant jumpstart frameworks increase the speed and agility of the AI/ML environment with effective and efficient environment lifecycle management.
  • 10
    Dataiku DSS
    Bring data analysts, engineers, and scientists together. Enable self-service analytics and operationalize machine learning. Get results today and build for tomorrow. Dataiku DSS is the collaborative data science software platform for teams of data scientists, data analysts, and engineers to explore, prototype, build, and deliver their own data products more efficiently. Use notebooks (Python, R, Spark, Scala, Hive, etc.) or a customizable drag-and-drop visual interface at any step of the predictive dataflow prototyping process – from wrangling to analysis to modeling. Profile the data visually at every step of the analysis. Interactively explore and chart your data using 25+ built-in charts. Prepare, enrich, blend, and clean data using 80+ built-in functions. Leverage Machine Learning technologies (Scikit-Learn, MLlib, TensorFlow, Keras, etc.) in a visual UI. Build & optimize models in Python or R and integrate any external ML library through code APIs.
  • 11
    IBM Watson Studio
    Build, run and manage AI models, and optimize decisions at scale across any cloud. IBM Watson Studio empowers you to operationalize AI anywhere as part of IBM Cloud Pak® for Data, the IBM data and AI platform. Unite teams, simplify AI lifecycle management and accelerate time to value with an open, flexible multicloud architecture. Automate AI lifecycles with ModelOps pipelines. Speed data science development with AutoAI. Prepare and build models visually and programmatically. Deploy and run models through one-click integration. Promote AI governance with fair, explainable AI. Drive better business outcomes by optimizing decisions. Use open source frameworks like PyTorch, TensorFlow and scikit-learn. Bring together the development tools including popular IDEs, Jupyter notebooks, JupterLab and CLIs — or languages such as Python, R and Scala. IBM Watson Studio helps you build and scale AI with trust and transparency by automating AI lifecycle management.
  • 12
    Amazon SageMaker JumpStart
    Amazon SageMaker JumpStart is a machine learning (ML) hub that can help you accelerate your ML journey. With SageMaker JumpStart, you can access built-in algorithms with pretrained models from model hubs, pretrained foundation models to help you perform tasks such as article summarization and image generation, and prebuilt solutions to solve common use cases. In addition, you can share ML artifacts, including ML models and notebooks, within your organization to accelerate ML model building and deployment. SageMaker JumpStart provides hundreds of built-in algorithms with pretrained models from model hubs, including TensorFlow Hub, PyTorch Hub, HuggingFace, and MxNet GluonCV. You can also access built-in algorithms using the SageMaker Python SDK. Built-in algorithms cover common ML tasks, such as data classifications (image, text, tabular) and sentiment analysis.
  • 13
    Amazon EC2 Trn2 Instances
    Amazon EC2 Trn2 instances, powered by AWS Trainium2 chips, are purpose-built for high-performance deep learning training of generative AI models, including large language models and diffusion models. They offer up to 50% cost-to-train savings over comparable Amazon EC2 instances. Trn2 instances support up to 16 Trainium2 accelerators, providing up to 3 petaflops of FP16/BF16 compute power and 512 GB of high-bandwidth memory. To facilitate efficient data and model parallelism, Trn2 instances feature NeuronLink, a high-speed, nonblocking interconnect, and support up to 1600 Gbps of second-generation Elastic Fabric Adapter (EFAv2) network bandwidth. They are deployed in EC2 UltraClusters, enabling scaling up to 30,000 Trainium2 chips interconnected with a nonblocking petabit-scale network, delivering 6 exaflops of compute performance. The AWS Neuron SDK integrates natively with popular machine learning frameworks like PyTorch and TensorFlow.
  • 14
    NVIDIA Triton Inference Server
    NVIDIA Triton™ inference server delivers fast and scalable AI in production. Open-source inference serving software, Triton inference server streamlines AI inference by enabling teams deploy trained AI models from any framework (TensorFlow, NVIDIA TensorRT®, PyTorch, ONNX, XGBoost, Python, custom and more on any GPU- or CPU-based infrastructure (cloud, data center, or edge). Triton runs models concurrently on GPUs to maximize throughput and utilization, supports x86 and ARM CPU-based inferencing, and offers features like dynamic batching, model analyzer, model ensemble, and audio streaming. Triton helps developers deliver high-performance inference aTriton integrates with Kubernetes for orchestration and scaling, exports Prometheus metrics for monitoring, supports live model updates, and can be used in all major public cloud machine learning (ML) and managed Kubernetes platforms. Triton helps standardize model deployment in production.
  • 15
    Amazon EC2 Inf1 Instances
    Amazon EC2 Inf1 instances are purpose-built to deliver high-performance and cost-effective machine learning inference. They provide up to 2.3 times higher throughput and up to 70% lower cost per inference compared to other Amazon EC2 instances. Powered by up to 16 AWS Inferentia chips, ML inference accelerators designed by AWS, Inf1 instances also feature 2nd generation Intel Xeon Scalable processors and offer up to 100 Gbps networking bandwidth to support large-scale ML applications. These instances are ideal for deploying applications such as search engines, recommendation systems, computer vision, speech recognition, natural language processing, personalization, and fraud detection. Developers can deploy their ML models on Inf1 instances using the AWS Neuron SDK, which integrates with popular ML frameworks like TensorFlow, PyTorch, and Apache MXNet, allowing for seamless migration with minimal code changes.
  • 16
    Lambda GPU Cloud
    Train the most demanding AI, ML, and Deep Learning models. Scale from a single machine to an entire fleet of VMs with a few clicks. Start or scale up your Deep Learning project with Lambda Cloud. Get started quickly, save on compute costs, and easily scale to hundreds of GPUs. Every VM comes preinstalled with the latest version of Lambda Stack, which includes major deep learning frameworks and CUDA® drivers. In seconds, access a dedicated Jupyter Notebook development environment for each machine directly from the cloud dashboard. For direct access, connect via the Web Terminal in the dashboard or use SSH directly with one of your provided SSH keys. By building compute infrastructure at scale for the unique requirements of deep learning researchers, Lambda can pass on significant savings. Benefit from the flexibility of using cloud computing without paying a fortune in on-demand pricing when workloads rapidly increase.
  • 17
    Google Cloud AI Infrastructure
    Options for every business to train deep learning and machine learning models cost-effectively. AI accelerators for every use case, from low-cost inference to high-performance training. Simple to get started with a range of services for development and deployment. Tensor Processing Units (TPUs) are custom-built ASIC to train and execute deep neural networks. Train and run more powerful and accurate models cost-effectively with faster speed and scale. A range of NVIDIA GPUs to help with cost-effective inference or scale-up or scale-out training. Leverage RAPID and Spark with GPUs to execute deep learning. Run GPU workloads on Google Cloud where you have access to industry-leading storage, networking, and data analytics technologies. Access CPU platforms when you start a VM instance on Compute Engine. Compute Engine offers a range of both Intel and AMD processors for your VMs.
  • 18
    Amazon SageMaker Studio Lab
    Amazon SageMaker Studio Lab is a free machine learning (ML) development environment that provides the compute, storage (up to 15GB), and security, all at no cost, for anyone to learn and experiment with ML. All you need to get started is a valid email address, you don’t need to configure infrastructure or manage identity and access or even sign up for an AWS account. SageMaker Studio Lab accelerates model building through GitHub integration, and it comes preconfigured with the most popular ML tools, frameworks, and libraries to get you started immediately. SageMaker Studio Lab automatically saves your work so you don’t need to restart in between sessions. It’s as easy as closing your laptop and coming back later. Free machine learning development environment that provides the computing, storage, and security to learn and experiment with ML. GitHub integration and preconfigured with the most popular ML tools, frameworks, and libraries so you can get started immediately.
  • 19
    SAS Visual Data Science Decisioning
    Integrate analytics into real-time ​interactions and event-based capabilities​. SAS Visual Data Science Decisioning features robust data management, visualization, advanced analytics and model management. It supports decisions by creating, embedding and governing analytically driven decision flows at scale in real-time or batch. It also deploys analytics and decisions in the stream to help you discover insights. Solve complex analytical problems with a comprehensive visual interface that handles all tasks in the analytics life cycle. SAS Visual Data Mining and Machine Learning, which runs in SAS® Viya®, combines data wrangling, exploration, feature engineering, and modern statistical, data mining, and machine learning techniques in a single, scalable in-memory processing environment. Access data files, libraries and existing programs, or write new ones, with this developmental web application accessible through your browser.
  • 20
    Civo

    Civo

    Civo

    Setup should be easy. We've listened to real user feedback from our community to simplify the developer experience. Our billing model has been designed from scratch for cloud-native, only pay for the resources you need, with no surprises. Boost productivity through industry-leading launch times. Accelerate development cycles, innovate, and deliver results faster. Blazing fast, simplified, managed Kubernetes. Host your applications and scale as and when you need them, with 90-second cluster launch times and a free control plane. Enterprise-class compute instances powered by Kubernetes. With multi-region support, DDoS protection, bandwidth pooling, and all the developer tools you need. A fully managed, auto-scaling machine learning environment. No Kubernetes or ML expertise is needed. Effortlessly set up and scale managed databases straight from your Civo dashboard or via our developer API. Scale up and down as you need, only pay for what you use.
  • 21
    Key Ward

    Key Ward

    Key Ward

    Extract, transform, manage, & process CAD, FE, CFD, and test data effortlessly. Create automatic data pipelines for machine learning, ROM, & 3D deep learning. Removing data science barriers without coding. Key Ward's platform is the first end-to-end engineering no-code solution that redefines how engineers interact with their data, experimental & CAx. Through leveraging engineering data intelligence, our software enables engineers to easily handle their multi-source data, extract direct value with our built-in advanced analytics tools, and custom-build their machine and deep learning models, all under one platform, all with a few clicks. Automatically centralize, update, extract, sort, clean, and prepare your multi-source data for analysis, machine learning, and/or deep learning. Use our advanced analytics tools on your experimental & simulation data to correlate, find dependencies, and identify patterns.
  • 22
    Appsilon

    Appsilon

    Appsilon

    Appsilon provides innovative data analytics, machine learning, and managed services solutions for Fortune 500 companies, NGOs, and non-profit organizations. We deliver the world’s most advanced R Shiny applications, with a unique ability to rapidly develop and scale enterprise Shiny dashboards. Our proprietary machine learning frameworks allow us to deliver Computer Vision, NLP, and fraud detection prototypes in as little as one week. Above all, we are committed to making a positive impact on the world. Through our AI For Good Initiative, we routinely contribute our skills to projects that support the preservation of human life and the conservation of animal populations all over the globe. Recently, our team has worked to mitigate poaching in Africa with computer vision, provide satellite image analysis for assessing damage after natural disasters, and build tools to help with COVID-19 risk assessment. Appsilon is also a pioneer in open source.
  • 23
    AWS Neuron

    AWS Neuron

    Amazon Web Services

    It supports high-performance training on AWS Trainium-based Amazon Elastic Compute Cloud (Amazon EC2) Trn1 instances. For model deployment, it supports high-performance and low-latency inference on AWS Inferentia-based Amazon EC2 Inf1 instances and AWS Inferentia2-based Amazon EC2 Inf2 instances. With Neuron, you can use popular frameworks, such as TensorFlow and PyTorch, and optimally train and deploy machine learning (ML) models on Amazon EC2 Trn1, Inf1, and Inf2 instances with minimal code changes and without tie-in to vendor-specific solutions. AWS Neuron SDK, which supports Inferentia and Trainium accelerators, is natively integrated with PyTorch and TensorFlow. This integration ensures that you can continue using your existing workflows in these popular frameworks and get started with only a few lines of code changes. For distributed model training, the Neuron SDK supports libraries, such as Megatron-LM and PyTorch Fully Sharded Data Parallel (FSDP).
  • 24
    Azure Machine Learning
    Accelerate the end-to-end machine learning lifecycle. Empower developers and data scientists with a wide range of productive experiences for building, training, and deploying machine learning models faster. Accelerate time to market and foster team collaboration with industry-leading MLOps—DevOps for machine learning. Innovate on a secure, trusted platform, designed for responsible ML. Productivity for all skill levels, with code-first and drag-and-drop designer, and automated machine learning. Robust MLOps capabilities that integrate with existing DevOps processes and help manage the complete ML lifecycle. Responsible ML capabilities – understand models with interpretability and fairness, protect data with differential privacy and confidential computing, and control the ML lifecycle with audit trials and datasheets. Best-in-class support for open-source frameworks and languages including MLflow, Kubeflow, ONNX, PyTorch, TensorFlow, Python, and R.
  • 25
    NVIDIA GPU-Optimized AMI
    The NVIDIA GPU-Optimized AMI is a virtual machine image for accelerating your GPU accelerated Machine Learning, Deep Learning, Data Science and HPC workloads. Using this AMI, you can spin up a GPU-accelerated EC2 VM instance in minutes with a pre-installed Ubuntu OS, GPU driver, Docker and NVIDIA container toolkit. This AMI provides easy access to NVIDIA's NGC Catalog, a hub for GPU-optimized software, for pulling & running performance-tuned, tested, and NVIDIA certified docker containers. The NGC catalog provides free access to containerized AI, Data Science, and HPC applications, pre-trained models, AI SDKs and other resources to enable data scientists, developers, and researchers to focus on building and deploying solutions. This GPU-optimized AMI is free with an option to purchase enterprise support offered through NVIDIA AI Enterprise. For how to get support for this AMI, scroll down to 'Support Information'
  • 26
    Google Cloud Vertex AI Workbench
    The single development environment for the entire data science workflow. Natively analyze your data with a reduction in context switching between services. Data to training at scale. Build and train models 5X faster, compared to traditional notebooks. Scale-up model development with simple connectivity to Vertex AI services. Simplified access to data and in-notebook access to machine learning with BigQuery, Dataproc, Spark, and Vertex AI integration. Take advantage of the power of infinite computing with Vertex AI training for experimentation and prototyping, to go from data to training at scale. Using Vertex AI Workbench you can implement your training, and deployment workflows on Vertex AI from one place. A Jupyter-based fully managed, scalable, enterprise-ready compute infrastructure with security controls and user management capabilities. Explore data and train ML models with easy connections to Google Cloud's big data solutions.
  • 27
    Daft

    Daft

    Daft

    Daft is a framework for ETL, analytics and ML/AI at scale. Its familiar Python dataframe API is built to outperform Spark in performance and ease of use. Daft plugs directly into your ML/AI stack through efficient zero-copy integrations with essential Python libraries such as Pytorch and Ray. It also allows requesting GPUs as a resource for running models. Daft runs locally with a lightweight multithreaded backend. When your local machine is no longer sufficient, it scales seamlessly to run out-of-core on a distributed cluster. Daft can handle User-Defined Functions (UDFs) in columns, allowing you to apply complex expressions and operations to Python objects with the full flexibility required for ML/AI. Daft runs locally with a lightweight multithreaded backend. When your local machine is no longer sufficient, it scales seamlessly to run out-of-core on a distributed cluster.
  • 28
    Metaflow

    Metaflow

    Metaflow

    Successful data science projects are delivered by data scientists who can build, improve, and operate end-to-end workflows independently, focusing more on data science, less on engineering. Use Metaflow with your favorite data science libraries, such as Tensorflow or SciKit Learn, and write your models in idiomatic Python code with not much new to learn. Metaflow also supports the R language. Metaflow helps you design your workflow, run it at scale, and deploy it to production. It versions and tracks all your experiments and data automatically. It allows you to inspect results easily in notebooks. Metaflow comes packaged with the tutorials, so getting started is easy. You can make copies of all the tutorials in your current directory using the metaflow command line interface.
  • 29
    Neural Designer
    Neural Designer is a powerful software tool for developing and deploying machine learning models. It provides a user-friendly interface that allows users to build, train, and evaluate neural networks without requiring extensive programming knowledge. With a wide range of features and algorithms, Neural Designer simplifies the entire machine learning workflow, from data preprocessing to model optimization. In addition, it supports various data types, including numerical, categorical, and text, making it versatile for domains. Additionally, Neural Designer offers automatic model selection and hyperparameter optimization, enabling users to find the best model for their data with minimal effort. Finally, its intuitive visualizations and comprehensive reports facilitate interpreting and understanding the model's performance.
  • 30
    Oblivus

    Oblivus

    Oblivus

    Our infrastructure is equipped to meet your computing requirements, be it one or thousands of GPUs, or one vCPU to tens of thousands of vCPUs, we've got you covered. Our resources are readily available to cater to your needs, whenever you need them. Switching between GPU and CPU instances is a breeze with our platform. You have the flexibility to deploy, modify, and rescale your instances according to your needs, without any hassle. Outstanding machine learning performance without breaking the bank. The latest technology at a significantly lower cost. Cutting-edge GPUs are designed to meet the demands of your workloads. Gain access to computational resources that are tailored to suit the intricacies of your models. Leverage our infrastructure to perform large-scale inference and access necessary libraries with our OblivusAI OS. Unleash the full potential of your gaming experience by utilizing our robust infrastructure to play games in the settings of your choice.
  • 31
    Oracle Data Science
    A data science platform that improves productivity with unparalleled abilities. Build and evaluate higher-quality machine learning (ML) models. Increase business flexibility by putting enterprise-trusted data to work quickly and support data-driven business objectives with easier deployment of ML models. Using cloud-based platforms to discover new business insights. Building a machine learning model is an iterative process. In this ebook, we break down the process and describe how machine learning models are built. Explore notebooks and build or test machine learning algorithms. Try AutoML and see data science results. Build high-quality models faster and easier. Automated machine learning capabilities rapidly examine the data and recommend the optimal data features and best algorithms. Additionally, automated machine learning tunes the model and explains the model’s results.
  • 32
    MLJAR Studio
    It's a desktop app with Jupyter Notebook and Python built in, installed with just one click. It includes interactive code snippets and an AI assistant to make coding faster and easier, perfect for data science projects. We manually hand crafted over 100 interactive code recipes that you can use in your Data Science projects. Code recipes detect packages available in the current environment. Install needed modules with 1-click, literally. You can create and interact with all variables available in your Python session. Interactive recipes speed-up your work. AI Assistant has access to your current Python session, variables and modules. Broad context makes it smart. Our AI Assistant was designed to solve data problems with Python programming language. It can help you with plots, data loading, data wrangling, Machine Learning and more. Use AI to quickly solve issues with code, just click Fix button. The AI assistant will analyze the error and propose the solution.
  • 33
    Wallaroo.AI

    Wallaroo.AI

    Wallaroo.AI

    Wallaroo facilitates the last-mile of your machine learning journey, getting ML into your production environment to impact the bottom line, with incredible speed and efficiency. Wallaroo is purpose-built from the ground up to be the easy way to deploy and manage ML in production, unlike Apache Spark, or heavy-weight containers. ML with up to 80% lower cost and easily scale to more data, more models, more complex models. Wallaroo is designed to enable data scientists to quickly and easily deploy their ML models against live data, whether to testing environments, staging, or prod. Wallaroo supports the largest set of machine learning training frameworks possible. You’re free to focus on developing and iterating on your models while letting the platform take care of deployment and inference at speed and scale.
  • 34
    VESSL AI

    VESSL AI

    VESSL AI

    Build, train, and deploy models faster at scale with fully managed infrastructure, tools, and workflows. Deploy custom AI & LLMs on any infrastructure in seconds and scale inference with ease. Handle your most demanding tasks with batch job scheduling, only paying with per-second billing. Optimize costs with GPU usage, spot instances, and built-in automatic failover. Train with a single command with YAML, simplifying complex infrastructure setups. Automatically scale up workers during high traffic and scale down to zero during inactivity. Deploy cutting-edge models with persistent endpoints in a serverless environment, optimizing resource usage. Monitor system and inference metrics in real-time, including worker count, GPU utilization, latency, and throughput. Efficiently conduct A/B testing by splitting traffic among multiple models for evaluation.
  • 35
    Darwin

    Darwin

    SparkCognition

    Darwin is an automated machine learning product that enables your data science and business analytics teams to move more quickly from data to meaningful results. Darwin helps organizations scale the adoption of data science across teams, and the implementation of machine learning applications across operations, becoming data-driven enterprises.
  • 36
    Comet

    Comet

    Comet

    Manage and optimize models across the entire ML lifecycle, from experiment tracking to monitoring models in production. Achieve your goals faster with the platform built to meet the intense demands of enterprise teams deploying ML at scale. Supports your deployment strategy whether it’s private cloud, on-premise servers, or hybrid. Add two lines of code to your notebook or script and start tracking your experiments. Works wherever you run your code, with any machine learning library, and for any machine learning task. Easily compare experiments—code, hyperparameters, metrics, predictions, dependencies, system metrics, and more—to understand differences in model performance. Monitor your models during every step from training to production. Get alerts when something is amiss, and debug your models to address the issue. Increase productivity, collaboration, and visibility across all teams and stakeholders.
    Starting Price: $179 per user per month
  • 37
    IBM watsonx.ai
    Now available—a next generation enterprise studio for AI builders to train, validate, tune and deploy AI models IBM® watsonx.ai™ AI studio is part of the IBM watsonx™ AI and data platform, bringing together new generative AI (gen AI) capabilities powered by foundation models and traditional machine learning (ML) into a powerful studio spanning the AI lifecycle. Tune and guide models with your enterprise data to meet your needs with easy-to-use tools for building and refining performant prompts. With watsonx.ai, you can build AI applications in a fraction of the time and with a fraction of the data. Watsonx.ai offers: End-to-end AI governance: Enterprises can scale and accelerate the impact of AI with trusted data across the business, using data wherever it resides. Hybrid, multi-cloud deployments: IBM provides the flexibility to integrate and deploy your AI workloads into your hybrid-cloud stack of choice.
  • 38
    IBM Analytics for Apache Spark
    IBM Analytics for Apache Spark is a flexible and integrated Spark service that empowers data science professionals to ask bigger, tougher questions, and deliver business value faster. It’s an easy-to-use, always-on managed service with no long-term commitment or risk, so you can begin exploring right away. Access the power of Apache Spark with no lock-in, backed by IBM’s open-source commitment and decades of enterprise experience. A managed Spark service with Notebooks as a connector means coding and analytics are easier and faster, so you can spend more of your time on delivery and innovation. A managed Apache Spark services gives you easy access to the power of built-in machine learning libraries without the headaches, time and risk associated with managing a Sparkcluster independently.
  • 39
    MATLAB

    MATLAB

    The MathWorks

    MATLAB® combines a desktop environment tuned for iterative analysis and design processes with a programming language that expresses matrix and array mathematics directly. It includes the Live Editor for creating scripts that combine code, output, and formatted text in an executable notebook. MATLAB toolboxes are professionally developed, rigorously tested, and fully documented. MATLAB apps let you see how different algorithms work with your data. Iterate until you’ve got the results you want, then automatically generate a MATLAB program to reproduce or automate your work. Scale your analyses to run on clusters, GPUs, and clouds with only minor code changes. There’s no need to rewrite your code or learn big data programming and out-of-memory techniques. Automatically convert MATLAB algorithms to C/C++, HDL, and CUDA code to run on your embedded processor or FPGA/ASIC. MATLAB works with Simulink to support Model-Based Design.
  • 40
    FICO Analytics Workbench
    Predictive Modeling with Machine Learning and Explainable AI. FICO® Analytics Workbench™ is an integrated suite of state-of-the-art analytic authoring tools that empowers companies to improve business decisions across the customer lifecycle. With it, data scientists can build superior decisioning capabilities using a wide range of predictive data modeling tools and algorithms, including the latest machine learning (ML) and explainable artificial intelligence (xAI) approaches. We enhance the best of open source data science and machine learning with innovative intellectual property from FICO to deliver world-class analytic capabilities to discover, combine, and operationalize predictive signals in data. Analytics Workbench is built on the leading FICO® Platform to allow new predictive models and strategies to be deployed into production with ease.
  • 41
    Dask

    Dask

    Dask

    Dask is open source and freely available. It is developed in coordination with other community projects like NumPy, pandas, and scikit-learn. Dask uses existing Python APIs and data structures to make it easy to switch between NumPy, pandas, scikit-learn to their Dask-powered equivalents. Dask's schedulers scale to thousand-node clusters and its algorithms have been tested on some of the largest supercomputers in the world. But you don't need a massive cluster to get started. Dask ships with schedulers designed for use on personal machines. Many people use Dask today to scale computations on their laptop, using multiple cores for computation and their disk for excess storage. Dask exposes lower-level APIs letting you build custom systems for in-house applications. This helps open source leaders parallelize their own packages and helps business leaders scale custom business logic.
  • 42
    OpenText Magellan
    Machine Learning and Predictive Analytics Platform. Augment data-driven decision making and accelerate business with advanced artificial intelligence in a pre-built machine learning and big data analytics platform. OpenText Magellan uses AI technologies to provide predictive analytics in easy to consume and flexible data visualizations that maximize the value of business intelligence. Artificial intelligence software eliminates the need for manual big data processing by presenting valuable business insights in a way that is accessible and related to the most critical objectives of the organization. By augmenting business processes through a curated mix of capabilities, including predictive modeling, data discovery tools, data mining techniques, IoT data analytics and more, organizations can use their data to improve decision making based on real business intelligence and analytics.
  • 43
    NVIDIA Merlin
    NVIDIA Merlin empowers data scientists, machine learning engineers, and researchers to build high-performing recommenders at scale. Merlin includes libraries, methods, and tools that streamline the building of recommenders by addressing common preprocessing, feature engineering, training, inference, and deploying to production challenges. Merlin components and capabilities are optimized to support the retrieval, filtering, scoring, and ordering of hundreds of terabytes of data, all accessible through easy-to-use APIs. With Merlin, better predictions, increased click-through rates, and faster deployment to production are within reach. NVIDIA Merlin, as part of NVIDIA AI, advances our commitment to supporting innovative practitioners doing their best work. As an end-to-end solution, NVIDIA Merlin components are designed to be interoperable within existing recommender workflows that utilize data science, and machine learning (ML).
  • 44
    Metacoder

    Metacoder

    Wazoo Mobile Technologies LLC

    Metacoder makes processing data faster and easier. Metacoder gives analysts needed flexibility and tools to facilitate data analysis. Data preparation steps such as cleaning are managed reducing the manual inspection time required before you are up and running. Compared to alternatives, is in good company. Metacoder beats similar companies on price and our management is proactively developing based on our customers' valuable feedback. Metacoder is used primarily to assist predictive analytics professionals in their job. We offer interfaces for database integrations, data cleaning, preprocessing, modeling, and display/interpretation of results. We help organizations distribute their work transparently by enabling model sharing, and we make management of the machine learning pipeline easy to make tweaks. Soon we will be including code free solutions for image, audio, video, and biomedical data.
  • 45
    StreamFlux

    StreamFlux

    Fractal

    Data is crucial when it comes to building, streamlining and growing your business. However, getting the full value out of data can be a challenge, many organizations are faced with poor access to data, incompatible tools, spiraling costs and slow results. Simply put, leaders who can turn raw data into real results will thrive in today’s landscape. The key to this is empowering everyone across your business to be able to analyze, build and collaborate on end-to-end AI and machine learning solutions in one place, fast. Streamflux is a one-stop shop to meet your data analytics and AI challenges. Our self-serve platform allows you the freedom to build end-to-end data solutions, uses models to answer complex questions and assesses user behaviors. Whether you’re predicting customer churn and future revenue, or generating recommendations, you can go from raw data to genuine business impact in days, not months.
  • 46
    Amazon EC2 Trn1 Instances
    Amazon Elastic Compute Cloud (EC2) Trn1 instances, powered by AWS Trainium chips, are purpose-built for high-performance deep learning training of generative AI models, including large language models and latent diffusion models. Trn1 instances offer up to 50% cost-to-train savings over other comparable Amazon EC2 instances. You can use Trn1 instances to train 100B+ parameter DL and generative AI models across a broad set of applications, such as text summarization, code generation, question answering, image and video generation, recommendation, and fraud detection. The AWS Neuron SDK helps developers train models on AWS Trainium (and deploy models on the AWS Inferentia chips). It integrates natively with frameworks such as PyTorch and TensorFlow so that you can continue using your existing code and workflows to train models on Trn1 instances.
  • 47
    Plotly Dash
    Dash & Dash Enterprise let you build & deploy analytic web apps using Python, R, and Julia. No JavaScript or DevOps required. Through Dash, the world's largest companies elevate AI, ML, and Python analytics to business users at 5% the cost of a full-stack development approach. Deliver apps and dashboards that run advanced analytics: ML, NLP, forecasting, computer vision and more. Work in the languages you love: Python, R, and Julia. Reduce costs by migrating legacy, per-seat licensed software to Dash Enterprise's open-core, unlimited end-user pricing model. Move faster by deploying and updating Dash apps without an IT or DevOps team. Create pixel-perfect dashboards & web apps, without writing any CSS. Scale effortlessly with Kubernetes. Support mission-critical Python applications with high availability.
  • 48
    AWS Deep Learning Containers
    Deep Learning Containers are Docker images that are preinstalled and tested with the latest versions of popular deep learning frameworks. Deep Learning Containers lets you deploy custom ML environments quickly without building and optimizing your environments from scratch. Deploy deep learning environments in minutes using prepackaged and fully tested Docker images. Build custom ML workflows for training, validation, and deployment through integration with Amazon SageMaker, Amazon EKS, and Amazon ECS.
  • 49
    Amazon SageMaker Model Building
    Amazon SageMaker provides all the tools and libraries you need to build ML models, the process of iteratively trying different algorithms and evaluating their accuracy to find the best one for your use case. In Amazon SageMaker you can pick different algorithms, including over 15 that are built-in and optimized for SageMaker, and use over 150 pre-built models from popular model zoos available with a few clicks. SageMaker also offers a variety of model-building tools including Amazon SageMaker Studio Notebooks and RStudio where you can run ML models on a small scale to see results and view reports on their performance so you can come up with high-quality working prototypes. Amazon SageMaker Studio Notebooks help you build ML models faster and collaborate with your team. Amazon SageMaker Studio notebooks provide one-click Jupyter notebooks that you can start working within seconds. Amazon SageMaker also enables one-click sharing of notebooks.
  • 50
    Azure OpenAI Service
    Apply advanced coding and language models to a variety of use cases. Leverage large-scale, generative AI models with deep understandings of language and code to enable new reasoning and comprehension capabilities for building cutting-edge applications. Apply these coding and language models to a variety of use cases, such as writing assistance, code generation, and reasoning over data. Detect and mitigate harmful use with built-in responsible AI and access enterprise-grade Azure security. Gain access to generative models that have been pretrained with trillions of words. Apply them to new scenarios including language, code, reasoning, inferencing, and comprehension. Customize generative models with labeled data for your specific scenario using a simple REST API. Fine-tune your model's hyperparameters to increase accuracy of outputs. Use the few-shot learning capability to provide the API with examples and achieve more relevant results.
    Starting Price: $0.0004 per 1000 tokens