Audience
Data scientists seeking a solution to fine-tune large language models across various architectures
About Axolotl
Axolotl is an open source tool designed to streamline the fine-tuning of various AI models, offering support for multiple configurations and architectures. It enables users to train models, supporting methods like full fine-tuning, LoRA, QLoRA, ReLoRA, and GPTQ. Users can customize configurations using simple YAML files or command-line interface overrides, and load different dataset formats, including custom or pre-tokenized datasets. Axolotl integrates with technologies like xFormers, Flash Attention, Liger kernel, RoPE scaling, and multipacking, and works with single or multiple GPUs via Fully Sharded Data Parallel (FSDP) or DeepSpeed. It can be run locally or on the cloud using Docker and supports logging results and checkpoints to several platforms. It is designed to make fine-tuning AI models friendly, fast, and fun, without sacrificing functionality or scale.