Audience
Audio researchers and developers needing a solution for creating realistic speech and music continuations directly from raw audio
About AudioLM
AudioLM is a pure audio language model that generates high‑fidelity, long‑term coherent speech and piano music by learning from raw audio alone, without requiring any text transcripts or symbolic representations. It represents audio hierarchically using two types of discrete tokens, semantic tokens extracted from a self‑supervised model to capture phonetic or melodic structure and global context, and acoustic tokens from a neural codec to preserve speaker characteristics and fine waveform details, and chains three Transformer stages to predict first semantic tokens for high‑level structure, then coarse and finally fine acoustic tokens for detailed synthesis. The resulting pipeline allows AudioLM to condition on a few seconds of input audio and produce seamless continuations that retain voice identity, prosody, and recording conditions in speech or melody, harmony, and rhythm in music. Human evaluations show that synthetic continuations are nearly indistinguishable from real recordings.