MLlib
Apache Spark's MLlib is a scalable machine learning library that integrates seamlessly with Spark's APIs, supporting Java, Scala, Python, and R. It offers a comprehensive suite of algorithms and utilities, including classification, regression, clustering, collaborative filtering, and tools for constructing machine learning pipelines. MLlib's high-quality algorithms leverage Spark's iterative computation capabilities, delivering performance up to 100 times faster than traditional MapReduce implementations. It is designed to operate across diverse environments, running on Hadoop, Apache Mesos, Kubernetes, standalone clusters, or in the cloud, and accessing various data sources such as HDFS, HBase, and local files. This flexibility makes MLlib a robust solution for scalable and efficient machine learning tasks within the Apache Spark ecosystem.
Learn more
E-MapReduce
EMR is an all-in-one enterprise-ready big data platform that provides cluster, job, and data management services based on open-source ecosystems, such as Hadoop, Spark, Kafka, Flink, and Storm. Alibaba Cloud Elastic MapReduce (EMR) is a big data processing solution that runs on the Alibaba Cloud platform. EMR is built on Alibaba Cloud ECS instances and is based on open-source Apache Hadoop and Apache Spark. EMR allows you to use the Hadoop and Spark ecosystem components, such as Apache Hive, Apache Kafka, Flink, Druid, and TensorFlow, to analyze and process data. You can use EMR to process data stored on different Alibaba Cloud data storage service, such as Object Storage Service (OSS), Log Service (SLS), and Relational Database Service (RDS). You can quickly create clusters without the need to configure hardware and software. All maintenance operations are completed on its Web interface.
Learn more
Horovod
Horovod was originally developed by Uber to make distributed deep learning fast and easy to use, bringing model training time down from days and weeks to hours and minutes. With Horovod, an existing training script can be scaled up to run on hundreds of GPUs in just a few lines of Python code. Horovod can be installed on-premise or run out-of-the-box in cloud platforms, including AWS, Azure, and Databricks. Horovod can additionally run on top of Apache Spark, making it possible to unify data processing and model training into a single pipeline. Once Horovod has been configured, the same infrastructure can be used to train models with any framework, making it easy to switch between TensorFlow, PyTorch, MXNet, and future frameworks as machine learning tech stacks continue to evolve.
Learn more
Deeplearning4j
DL4J takes advantage of the latest distributed computing frameworks including Apache Spark and Hadoop to accelerate training. On multi-GPUs, it is equal to Caffe in performance. The libraries are completely open-source, Apache 2.0, and maintained by the developer community and Konduit team. Deeplearning4j is written in Java and is compatible with any JVM language, such as Scala, Clojure, or Kotlin. The underlying computations are written in C, C++, and Cuda. Keras will serve as the Python API. Eclipse Deeplearning4j is the first commercial-grade, open-source, distributed deep-learning library written for Java and Scala. Integrated with Hadoop and Apache Spark, DL4J brings AI to business environments for use on distributed GPUs and CPUs. There are a lot of parameters to adjust when you're training a deep-learning network. We've done our best to explain them, so that Deeplearning4j can serve as a DIY tool for Java, Scala, Clojure, and Kotlin programmers.
Learn more