14 Integrations with Anyscale

View a list of Anyscale integrations and software that integrates with Anyscale below. Compare the best Anyscale integrations as well as features, ratings, user reviews, and pricing of software that integrates with Anyscale. Here are the current Anyscale integrations in 2026:

  • 1
    Google Cloud Platform
    Google Cloud is a cloud-based service that allows you to create anything from simple websites to complex applications for businesses of all sizes. New customers get $300 in free credits to run, test, and deploy workloads. All customers can use 25+ products for free, up to monthly usage limits. Use Google's core infrastructure, data analytics & machine learning. Secure and fully featured for all enterprises. Tap into big data to find answers faster and build better products. Grow from prototype to production to planet-scale, without having to think about capacity, reliability or performance. From virtual machines with proven price/performance advantages to a fully managed app development platform. Scalable, resilient, high performance object storage and databases for your applications. State-of-the-art software-defined networking products on Google’s private fiber network. Fully managed data warehousing, batch and stream processing, data exploration, Hadoop/Spark, and messaging.
    Leader badge
    Starting Price: Free ($300 in free credits)
    View Software
    Visit Website
  • 2
    Kubernetes

    Kubernetes

    Kubernetes

    Kubernetes (K8s) is an open-source system for automating deployment, scaling, and management of containerized applications. It groups containers that make up an application into logical units for easy management and discovery. Kubernetes builds upon 15 years of experience of running production workloads at Google, combined with best-of-breed ideas and practices from the community. Designed on the same principles that allows Google to run billions of containers a week, Kubernetes can scale without increasing your ops team. Whether testing locally or running a global enterprise, Kubernetes flexibility grows with you to deliver your applications consistently and easily no matter how complex your need is. Kubernetes is open source giving you the freedom to take advantage of on-premises, hybrid, or public cloud infrastructure, letting you effortlessly move workloads to where it matters to you.
    Starting Price: Free
  • 3
    Amazon Web Services (AWS)
    Amazon Web Services (AWS) is the world’s most comprehensive cloud platform, trusted by millions of customers across industries. From startups to global enterprises and government agencies, AWS provides on-demand solutions for compute, storage, networking, AI, analytics, and more. The platform empowers organizations to innovate faster, reduce costs, and scale globally with unmatched flexibility and reliability. With services like Amazon EC2 for compute, Amazon S3 for storage, SageMaker for AI/ML, and CloudFront for content delivery, AWS covers nearly every business and technical need. Its global infrastructure spans 120 availability zones across 38 regions, ensuring resilience, compliance, and security. Backed by the largest community of customers, partners, and developers, AWS continues to lead the cloud industry in innovation and operational expertise.
  • 4
    Microsoft Azure
    Microsoft's Azure is a cloud computing platform that allows for rapid and secure application development, testing and management. Azure. Invent with purpose. Turn ideas into solutions with more than 100 services to build, deploy, and manage applications—in the cloud, on-premises, and at the edge—using the tools and frameworks of your choice. Continuous innovation from Microsoft supports your development today, and your product visions for tomorrow. With a commitment to open source, and support for all languages and frameworks, build how you want, and deploy where you want to. On-premises, in the cloud, and at the edge—we’ll meet you where you are. Integrate and manage your environments with services designed for hybrid cloud. Get security from the ground up, backed by a team of experts, and proactive compliance trusted by enterprises, governments, and startups. The cloud you can trust, with the numbers to prove it.
  • 5
    Ray

    Ray

    Anyscale

    Develop on your laptop and then scale the same Python code elastically across hundreds of nodes or GPUs on any cloud, with no changes. Ray translates existing Python concepts to the distributed setting, allowing any serial application to be easily parallelized with minimal code changes. Easily scale compute-heavy machine learning workloads like deep learning, model serving, and hyperparameter tuning with a strong ecosystem of distributed libraries. Scale existing workloads (for eg. Pytorch) on Ray with minimal effort by tapping into integrations. Native Ray libraries, such as Ray Tune and Ray Serve, lower the effort to scale the most compute-intensive machine learning workloads, such as hyperparameter tuning, training deep learning models, and reinforcement learning. For example, get started with distributed hyperparameter tuning in just 10 lines of code. Creating distributed apps is hard. Ray handles all aspects of distributed execution.
    Starting Price: Free
  • 6
    Unify AI

    Unify AI

    Unify AI

    Explore the power of choosing the right LLM for your needs and how to optimize for quality, speed, and cost-efficiency. Access all LLMs across all providers with a single API key and a standard API. Setup your own cost, latency, and output speed constraints. Define a custom quality metric. Personalize your router for your requirements. Systematically send your queries to the fastest provider, based on the very latest benchmark data for your region of the world, refreshed every 10 minutes. Get started with Unify with our dedicated walkthrough. Discover the features you already have access to and our upcoming roadmap. Just create a Unify account to access all models from all supported providers with a single API key. Our router balances output quality, speed, and cost based on user-specific preferences. The quality is predicted ahead of time using a neural scoring function, which predicts how good each model would be at responding to a given prompt.
    Starting Price: $1 per credit
  • 7
    MindMac

    MindMac

    MindMac

    MindMac is a native macOS application designed to enhance productivity by integrating seamlessly with ChatGPT and other AI models. It supports multiple AI providers, including OpenAI, Azure OpenAI, Google AI with Gemini, Google Cloud Vertex AI with Gemini, Anthropic Claude, OpenRouter, Mistral AI, Cohere, Perplexity, OctoAI, and local LLMs via LMStudio, LocalAI, GPT4All, Ollama, and llama.cpp. MindMac offers over 150 built-in prompt templates to facilitate user interaction and allows for extensive customization of OpenAI parameters, appearance, context modes, and keyboard shortcuts. The application features a powerful inline mode, enabling users to generate content or ask questions within any application without switching windows. MindMac ensures privacy by storing API keys securely in the Mac's Keychain and sending data directly to the AI provider without intermediary servers. The app is free to use with basic features, requiring no account for setup.
    Starting Price: $29 one-time payment
  • 8
    LiteLLM

    LiteLLM

    LiteLLM

    ​LiteLLM is a versatile platform designed to streamline interactions with over 100 Large Language Models (LLMs) through a unified interface. It offers both a Proxy Server (LLM Gateway) and a Python SDK, enabling developers to integrate various LLMs seamlessly into their applications. The Proxy Server facilitates centralized management, allowing for load balancing, cost tracking across projects, and consistent input/output formatting compatible with OpenAI standards. This setup supports multiple providers. It ensures robust observability by generating unique call IDs for each request, aiding in precise tracking and logging across systems. Developers can leverage pre-defined callbacks to log data using various tools. For enterprise users, LiteLLM offers advanced features like Single Sign-On (SSO), user management, and professional support through dedicated channels like Discord and Slack.
    Starting Price: Free
  • 9
    Pinecone Rerank v0
    Pinecone Rerank V0 is a cross-encoder model optimized for precision in reranking tasks, enhancing enterprise search and retrieval-augmented generation (RAG) systems. It processes queries and documents together to capture fine-grained relevance, assigning a relevance score from 0 to 1 for each query-document pair. The model's maximum context length is set to 512 tokens to preserve ranking quality. Evaluations on the BEIR benchmark demonstrated that Pinecone Rerank V0 achieved the highest average NDCG@10, outperforming other models on 6 out of 12 datasets. For instance, it showed up to a 60% boost on the Fever dataset compared to Google Semantic Ranker and over 40% on the Climate-Fever dataset relative to cohere-v3-multilingual or voyageai-rerank-2. The model is accessible through Pinecone Inference and is available to all users in public preview.
    Starting Price: $25 per month
  • 10
    Llama 2
    The next generation of our open source large language model. This release includes model weights and starting code for pretrained and fine-tuned Llama language models — ranging from 7B to 70B parameters. Llama 2 pretrained models are trained on 2 trillion tokens, and have double the context length than Llama 1. Its fine-tuned models have been trained on over 1 million human annotations. Llama 2 outperforms other open source language models on many external benchmarks, including reasoning, coding, proficiency, and knowledge tests. Llama 2 was pretrained on publicly available online data sources. The fine-tuned model, Llama-2-chat, leverages publicly available instruction datasets and over 1 million human annotations. We have a broad range of supporters around the world who believe in our open approach to today’s AI — companies that have given early feedback and are excited to build with Llama 2.
    Starting Price: Free
  • 11
    Nurix

    Nurix

    Nurix

    Nurix AI is a Bengaluru-based company specializing in the development of custom AI agents designed to automate and enhance enterprise workflows across various sectors, including sales and customer support. Nurix AI's platform integrates seamlessly with existing enterprise systems, enabling AI agents to execute complex tasks autonomously, provide real-time responses, and make intelligent decisions without constant human oversight. A standout feature is their proprietary voice-to-voice model, which supports low-latency, human-like conversations in multiple languages, enhancing customer interactions. Nurix AI offers tailored AI services for startups, providing end-to-end solutions to build and scale AI products without the need for extensive in-house teams. Their expertise encompasses large language models, cloud integration, inference, and model training, ensuring that clients receive reliable and enterprise-ready AI solutions.
  • 12
    RouteLLM
    Developed by LM-SYS, RouteLLM is an open-source toolkit that allows users to route tasks between different large language models to improve efficiency and manage resources. It supports strategy-based routing, helping developers balance speed, accuracy, and cost by selecting the best model for each input dynamically.
  • 13
    AWS Inferentia
    AWS Inferentia accelerators are designed by AWS to deliver high performance at the lowest cost for your deep learning (DL) inference applications. The first-generation AWS Inferentia accelerator powers Amazon Elastic Compute Cloud (Amazon EC2) Inf1 instances, which deliver up to 2.3x higher throughput and up to 70% lower cost per inference than comparable GPU-based Amazon EC2 instances. Many customers, including Airbnb, Snap, Sprinklr, Money Forward, and Amazon Alexa, have adopted Inf1 instances and realized its performance and cost benefits. The first-generation Inferentia has 8 GB of DDR4 memory per accelerator and also features a large amount of on-chip memory. Inferentia2 offers 32 GB of HBM2e per accelerator, increasing the total memory by 4x and memory bandwidth by 10x over Inferentia.
  • 14
    AWS Trainium

    AWS Trainium

    Amazon Web Services

    AWS Trainium is the second-generation Machine Learning (ML) accelerator that AWS purpose built for deep learning training of 100B+ parameter models. Each Amazon Elastic Compute Cloud (EC2) Trn1 instance deploys up to 16 AWS Trainium accelerators to deliver a high-performance, low-cost solution for deep learning (DL) training in the cloud. Although the use of deep learning is accelerating, many development teams are limited by fixed budgets, which puts a cap on the scope and frequency of training needed to improve their models and applications. Trainium-based EC2 Trn1 instances solve this challenge by delivering faster time to train while offering up to 50% cost-to-train savings over comparable Amazon EC2 instances.
  • Previous
  • You're on page 1
  • Next