Compare the Top OLAP Databases that integrate with DataGrip as of October 2025

This a list of OLAP Databases that integrate with DataGrip. Use the filters on the left to add additional filters for products that have integrations with DataGrip. View the products that work with DataGrip in the table below.

What are OLAP Databases for DataGrip?

OLAP (Online Analytical Processing) databases are designed to support complex queries and data analysis, typically for business intelligence and decision-making purposes. They enable users to interactively explore large volumes of multidimensional data, offering fast retrieval of insights across various dimensions such as time, geography, and product categories. OLAP databases use specialized structures like cubes to allow for rapid aggregation and calculation of data. These databases are highly optimized for read-heavy operations, making them ideal for generating reports, dashboards, and analytical queries. Overall, OLAP databases help organizations quickly analyze data to uncover patterns, trends, and insights for better decision-making. Compare and read user reviews of the best OLAP Databases for DataGrip currently available using the table below. This list is updated regularly.

  • 1
    Google Cloud BigQuery
    BigQuery is optimized for Online Analytical Processing (OLAP), offering high-speed data queries and analysis on multidimensional datasets. It provides businesses with the ability to perform complex analytical queries on large datasets, supporting deep analysis across various business dimensions. The platform’s ability to scale automatically ensures that even large OLAP workloads are handled efficiently. New users can take advantage of $300 in free credits to explore how BigQuery can handle OLAP tasks, improving the speed and accuracy of their business intelligence processes. Its serverless architecture means businesses can focus on their data rather than managing infrastructure.
    Starting Price: Free ($300 in free credits)
    View Software
    Visit Website
  • 2
    Snowflake

    Snowflake

    Snowflake

    Snowflake is a comprehensive AI Data Cloud platform designed to eliminate data silos and simplify data architectures, enabling organizations to get more value from their data. The platform offers interoperable storage that provides near-infinite scale and access to diverse data sources, both inside and outside Snowflake. Its elastic compute engine delivers high performance for any number of users, workloads, and data volumes with seamless scalability. Snowflake’s Cortex AI accelerates enterprise AI by providing secure access to leading large language models (LLMs) and data chat services. The platform’s cloud services automate complex resource management, ensuring reliability and cost efficiency. Trusted by over 11,000 global customers across industries, Snowflake helps businesses collaborate on data, build data applications, and maintain a competitive edge.
    Starting Price: $2 compute/month
  • 3
    CockroachDB

    CockroachDB

    Cockroach Labs

    CockroachDB: Cloud-native, distributed SQL. Your cloud applications deserve a cloud-native database. Cloud-based apps and services deserve a database that scales across clouds, eases operational complexity, and improves reliability. CockroachDB delivers resilient, distributed SQL with ACID transactions and data partitioned by location. Automate operations for mission-critical applications by pairing CockroachDB with orchestration tools like Kubernetes and Mesosphere DC/OS. Every node can service both reads and writes so that you can scale query throughput and database capacity by simply adding more endpoints. Just add new nodes to CockroachDB, and it automatically rebalances data, completely removing the pain of manual sharding. As demand shifts, CockroachDB detects hotspots and intelligently distributes data to maintain performance. Tune your database at the row level so that data lives close to your users and you can minimize query latency.
  • 4
    ClickHouse

    ClickHouse

    ClickHouse

    ClickHouse is a fast open-source OLAP database management system. It is column-oriented and allows to generate analytical reports using SQL queries in real-time. ClickHouse's performance exceeds comparable column-oriented database management systems currently available on the market. It processes hundreds of millions to more than a billion rows and tens of gigabytes of data per single server per second. ClickHouse uses all available hardware to its full potential to process each query as fast as possible. Peak processing performance for a single query stands at more than 2 terabytes per second (after decompression, only used columns). In distributed setup reads are automatically balanced among healthy replicas to avoid increasing latency. ClickHouse supports multi-master asynchronous replication and can be deployed across multiple datacenters. All nodes are equal, which allows avoiding having single points of failure.
  • 5
    Amazon Redshift
    More customers pick Amazon Redshift than any other cloud data warehouse. Redshift powers analytical workloads for Fortune 500 companies, startups, and everything in between. Companies like Lyft have grown with Redshift from startups to multi-billion dollar enterprises. No other data warehouse makes it as easy to gain new insights from all your data. With Redshift you can query petabytes of structured and semi-structured data across your data warehouse, operational database, and your data lake using standard SQL. Redshift lets you easily save the results of your queries back to your S3 data lake using open formats like Apache Parquet to further analyze from other analytics services like Amazon EMR, Amazon Athena, and Amazon SageMaker. Redshift is the world’s fastest cloud data warehouse and gets faster every year. For performance intensive workloads you can use the new RA3 instances to get up to 3x the performance of any cloud data warehouse.
    Starting Price: $0.25 per hour
  • 6
    OpenText Analytics Database (Vertica)
    OpenText Analytics Database is a high-performance, scalable analytics platform that enables organizations to analyze massive data sets quickly and cost-effectively. It supports real-time analytics and in-database machine learning to deliver actionable business insights. The platform can be deployed flexibly across hybrid, multi-cloud, and on-premises environments to optimize infrastructure and reduce total cost of ownership. Its massively parallel processing (MPP) architecture handles complex queries efficiently, regardless of data size. OpenText Analytics Database also features compatibility with data lakehouse architectures, supporting formats like Parquet and ORC. With built-in machine learning and broad language support, it empowers users from SQL experts to Python developers to derive predictive insights.
  • 7
    IBM Db2
    IBM Db2 is a family of data management products, including the Db2 relational database. The products feature AI-powered capabilities to help you modernize the management of both structured and unstructured data across on-premises and multicloud environments. By helping to make your data simple and accessible, the Db2 family positions your business to pursue the value of AI. Most of the Db2 family is available on the IBM Cloud Pak® for Data platform, either as an add-on or an included data source service, making virtually all of your data available across hybrid or multicloud environments to fuel your AI applications. Easily converge your transactional data stores and rapidly derive insights through universal, intelligent querying of data across disparate sources. Cut costs with the multimodel capability that eliminates the need for data replication and migration. Enhance agility by running Db2 on any cloud vendor.
  • 8
    Greenplum

    Greenplum

    Greenplum Database

    Greenplum Database® is an advanced, fully featured, open source data warehouse. It provides powerful and rapid analytics on petabyte scale data volumes. Uniquely geared toward big data analytics, Greenplum Database is powered by the world’s most advanced cost-based query optimizer delivering high analytical query performance on large data volumes. Greenplum Database® project is released under the Apache 2 license. We want to thank all our current community contributors and are interested in all new potential contributions. For the Greenplum Database community no contribution is too small, we encourage all types of contributions. An open-source massively parallel data platform for analytics, machine learning and AI. Rapidly create and deploy models for complex applications in cybersecurity, predictive maintenance, risk management, fraud detection, and many other areas. Experience the fully featured, integrated, open source analytics platform.
  • 9
    Exasol

    Exasol

    Exasol

    With an in-memory, columnar database and MPP architecture, you can query billions of rows in seconds. Queries are distributed across all nodes in a cluster, providing linear scalability for more users and advanced analytics. MPP, in-memory, and columnar storage add up to the fastest database built for data analytics. With SaaS, cloud, on premises and hybrid deployment options you can analyze data wherever it lives. Automatic query tuning reduces maintenance and overhead. Seamless integrations and performance efficiency gets you more power at a fraction of normal infrastructure costs. Smart, in-memory query processing allowed this social networking company to boost performance, processing 10B data sets a year. A single data repository and speed engine to accelerate critical analytics, delivering improved patient outcome and bottom line.
  • Previous
  • You're on page 1
  • Next