Compare the Top Multimodal Models in 2025

Multimodal models are AI models designed to process and integrate multiple types of data, such as text, images, audio, and video. These models enable a deeper understanding of information by combining diverse inputs to generate richer and more context-aware outputs. For instance, a multimodal model might analyze an image and its accompanying text to provide detailed captions or insights. They are widely used in applications like virtual assistants, medical diagnostics, and multimedia content generation. By bridging different modes of data, multimodal models enhance the accuracy and versatility of AI systems in solving complex, real-world problems. Here's a list of the best multimodal models:

  • 1
    ChatGPT

    ChatGPT

    OpenAI

    ChatGPT is an AI-powered conversational assistant developed by OpenAI that helps users with writing, learning, brainstorming, coding, and more. It is free to use with easy access via web and apps on multiple devices. Users can interact through typing or voice to get answers, generate creative content, summarize information, and automate tasks. The platform supports various use cases, from casual questions to complex research and coding help. ChatGPT offers multiple subscription plans, including Free, Plus, and Pro, with increasing access to advanced AI models and features. It is designed to boost productivity and creativity for individuals, students, professionals, and developers alike.
    Starting Price: Free
  • 2
    Gemini

    Gemini

    Google

    Gemini is Google's advanced AI chatbot designed to enhance creativity and productivity by engaging in natural language conversations. Accessible via the web and mobile apps, Gemini integrates seamlessly with various Google services, including Docs, Drive, and Gmail, enabling users to draft content, summarize information, and manage tasks efficiently. Its multimodal capabilities allow it to process and generate diverse data types, such as text, images, and audio, providing comprehensive assistance across different contexts. As a continuously learning model, Gemini adapts to user interactions, offering personalized and context-aware responses to meet a wide range of user needs.
    Starting Price: Free
  • 3
    GPT-4

    GPT-4

    OpenAI

    GPT-4 (Generative Pre-trained Transformer 4) is a large-scale unsupervised language model, yet to be released by OpenAI. GPT-4 is the successor to GPT-3 and part of the GPT-n series of natural language processing models, and was trained on a dataset of 45TB of text to produce human-like text generation and understanding capabilities. Unlike most other NLP models, GPT-4 does not require additional training data for specific tasks. Instead, it can generate text or answer questions using only its own internally generated context as input. GPT-4 has been shown to be able to perform a wide variety of tasks without any task specific training data such as translation, summarization, question answering, sentiment analysis and more.
    Starting Price: $0.0200 per 1000 tokens
  • 4
    GPT-4 Turbo
    GPT-4 is a large multimodal model (accepting text or image inputs and outputting text) that can solve difficult problems with greater accuracy than any of our previous models, thanks to its broader general knowledge and advanced reasoning capabilities. GPT-4 is available in the OpenAI API to paying customers. Like gpt-3.5-turbo, GPT-4 is optimized for chat but works well for traditional completions tasks using the Chat Completions API. GPT-4 is the latest GPT-4 model with improved instruction following, JSON mode, reproducible outputs, parallel function calling, and more. Returns a maximum of 4,096 output tokens. This preview model is not yet suited for production traffic.
    Starting Price: $0.0200 per 1000 tokens
  • 5
    Gemini Advanced
    Gemini Advanced is a cutting-edge AI model designed for unparalleled performance in natural language understanding, generation, and problem-solving across diverse domains. Featuring a revolutionary neural architecture, it delivers exceptional accuracy, nuanced contextual comprehension, and deep reasoning capabilities. Gemini Advanced is engineered to handle complex, multifaceted tasks, from creating detailed technical content and writing code to conducting in-depth data analysis and providing strategic insights. Its adaptability and scalability make it a powerful solution for both individual users and enterprise-level applications. Gemini Advanced sets a new standard for intelligence, innovation, and reliability in AI-powered solutions. You'll also get access to Gemini in Gmail, Docs, and more, 2 TB storage, and other benefits from Google One. Gemini Advanced also offers access to Gemini with Deep Research. You can conduct in-depth and real-time research on almost any subject.
    Starting Price: $19.99 per month
  • 6
    Mistral AI

    Mistral AI

    Mistral AI

    Mistral AI is a pioneering artificial intelligence startup specializing in open-source generative AI. The company offers a range of customizable, enterprise-grade AI solutions deployable across various platforms, including on-premises, cloud, edge, and devices. Flagship products include "Le Chat," a multilingual AI assistant designed to enhance productivity in both personal and professional contexts, and "La Plateforme," a developer platform that enables the creation and deployment of AI-powered applications. Committed to transparency and innovation, Mistral AI positions itself as a leading independent AI lab, contributing significantly to open-source AI and policy development.
    Starting Price: Free
  • 7
    Cohere

    Cohere

    Cohere AI

    Cohere is an enterprise AI platform that enables developers and businesses to build powerful language-based applications. Specializing in large language models (LLMs), Cohere provides solutions for text generation, summarization, and semantic search. Their model offerings include the Command family for high-performance language tasks and Aya Expanse for multilingual applications across 23 languages. Focused on security and customization, Cohere allows flexible deployment across major cloud providers, private cloud environments, or on-premises setups to meet diverse enterprise needs. The company collaborates with industry leaders like Oracle and Salesforce to integrate generative AI into business applications, improving automation and customer engagement. Additionally, Cohere For AI, their research lab, advances machine learning through open-source projects and a global research community.
    Starting Price: Free
  • 8
    DALL·E 3
    DALL·E 3 understands significantly more nuance and detail than our previous systems, allowing you to easily translate your ideas into exceptionally accurate images. Modern text-to-image systems have a tendency to ignore words or descriptions, forcing users to learn prompt engineering. DALL·E 3 represents a leap forward in our ability to generate images that exactly adhere to the text you provide. Even with the same prompt, DALL·E 3 delivers significant improvements over DALL·E 2. DALL·E 3 is built natively on ChatGPT, which lets you use ChatGPT as a brainstorming partner and refiner of your prompts. Just ask ChatGPT what you want to see in anything from a simple sentence to a detailed paragraph. When prompted with an idea, ChatGPT will automatically generate tailored, detailed prompts for DALL·E 3 that bring your idea to life. If you like a particular image, but it’s not quite right, you can ask ChatGPT to make tweaks with just a few words.
    Starting Price: Free
  • 9
    GPT-4o

    GPT-4o

    OpenAI

    GPT-4o (“o” for “omni”) is a step towards much more natural human-computer interaction—it accepts as input any combination of text, audio, image, and video and generates any combination of text, audio, and image outputs. It can respond to audio inputs in as little as 232 milliseconds, with an average of 320 milliseconds, which is similar to human response time (opens in a new window) in a conversation. It matches GPT-4 Turbo performance on text in English and code, with significant improvement on text in non-English languages, while also being much faster and 50% cheaper in the API. GPT-4o is especially better at vision and audio understanding compared to existing models.
    Starting Price: $5.00 / 1M tokens
  • 10
    Claude Sonnet 3.5
    Claude Sonnet 3.5 sets new industry benchmarks for graduate-level reasoning (GPQA), undergraduate-level knowledge (MMLU), and coding proficiency (HumanEval). It shows marked improvement in grasping nuance, humor, and complex instructions, and is exceptional at writing high-quality content with a natural, relatable tone. Claude Sonnet 3.5 operates at twice the speed of Claude Opus 3. This performance boost, combined with cost-effective pricing, makes Claude Sonnet 3.5 ideal for complex tasks such as context-sensitive customer support and orchestrating multi-step workflows. Claude Sonnet 3.5 is now available for free on Claude.ai and the Claude iOS app, while Claude Pro and Team plan subscribers can access it with significantly higher rate limits. It is also available via the Anthropic API, Amazon Bedrock, and Google Cloud’s Vertex AI. The model costs $3 per million input tokens and $15 per million output tokens, with a 200K token context window.
    Starting Price: Free
  • 11
    Grok 3
    Grok-3, developed by xAI, represents a significant advancement in the field of artificial intelligence, aiming to set new benchmarks in AI capabilities. It is designed to be a multimodal AI, capable of processing and understanding data from various sources including text, images, and audio, which allows for a more integrated and comprehensive interaction with users. Grok-3 is built on an unprecedented scale, with training involving ten times more computational resources than its predecessor, leveraging 100,000 Nvidia H100 GPUs on the Colossus supercomputer. This extensive computational power is expected to enhance Grok-3's performance in areas like reasoning, coding, and real-time analysis of current events through direct access to X posts. The model is anticipated to outperform not only its earlier versions but also compete with other leading AI models in the generative AI landscape.
    Starting Price: Free
  • 12
    GPT-4.5

    GPT-4.5

    OpenAI

    GPT-4.5 is a powerful AI model that improves upon its predecessor by scaling unsupervised learning, enhancing reasoning abilities, and offering improved collaboration capabilities. Designed to better understand human intent and collaborate in more natural, intuitive ways, GPT-4.5 delivers higher accuracy and lower hallucination rates across a broad range of topics. Its advanced capabilities enable it to generate creative and insightful content, solve complex problems, and assist with tasks in writing, design, and even space exploration. With improved AI-human interactions, GPT-4.5 is optimized for practical applications, making it more accessible and reliable for businesses and developers.
    Starting Price: $75.00 / 1M tokens
  • 13
    Grok 3 DeepSearch
    Grok 3 DeepSearch is an advanced model and research agent designed to improve reasoning and problem-solving abilities in AI, with a strong focus on deep search and iterative reasoning. Unlike traditional models that rely solely on pre-trained knowledge, Grok 3 DeepSearch can explore multiple avenues, test hypotheses, and correct errors in real-time by analyzing vast amounts of information and engaging in chain-of-thought processes. It is designed for tasks that require critical thinking, such as complex mathematical problems, coding challenges, and intricate academic inquiries. Grok 3 DeepSearch is a cutting-edge AI tool capable of providing accurate and thorough solutions by using its unique deep search capabilities, making it ideal for both STEM and creative fields.
    Starting Price: $30/month
  • 14
    Claude Sonnet 3.7
    Claude Sonnet 3.7, developed by Anthropic, is a cutting-edge AI model that combines rapid response with deep reflective reasoning. This innovative model allows users to toggle between quick, efficient responses and more thoughtful, reflective answers, making it ideal for complex problem-solving. By allowing Claude to self-reflect before answering, it excels at tasks that require high-level reasoning and nuanced understanding. With its ability to engage in deeper thought processes, Claude Sonnet 3.7 enhances tasks such as coding, natural language processing, and critical thinking applications. Available across various platforms, it offers a powerful tool for professionals and organizations seeking a high-performance, adaptable AI.
    Starting Price: Free
  • 15
    Claude Opus 4

    Claude Opus 4

    Anthropic

    Claude Opus 4 represents a revolutionary leap in AI model performance, setting a new standard for coding and reasoning capabilities. As the world’s best coding model, Opus 4 excels in handling long-running, complex tasks, and agent workflows. With sustained performance that can run for hours, it outperforms all prior models—including the Sonnet series—making it ideal for demanding coding projects, research, and AI agent applications. It’s the model of choice for organizations looking to enhance their software engineering, streamline workflows, and improve productivity with remarkable precision. Now available on Anthropic API, Amazon Bedrock, and Google Cloud’s Vertex AI, Opus 4 offers unparalleled support for coding, debugging, and collaborative agent tasks.
    Starting Price: $15 / 1 million tokens (input)
  • 16
    ChatGPT Plus
    We’ve trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer followup questions, admit its mistakes, challenge incorrect premises, and reject inappropriate requests. ChatGPT is a sibling model to InstructGPT, which is trained to follow an instruction in a prompt and provide a detailed response. ChatGPT Plus is a subscription plan for ChatGPT a conversational AI. ChatGPT Plus costs $20/month, and subscribers will receive a number of benefits: - General access to ChatGPT, even during peak times - Faster response times - GPT-4 access - ChatGPT plugins - Web-browsing with ChatGPT - Priority access to new features and improvements ChatGPT Plus is available to customers in the United States, and we will begin the process of inviting people from our waitlist over the coming weeks. We plan to expand access and support to additional countries and regions soon.
    Starting Price: $20 per month
  • 17
    Qwen

    Qwen

    Alibaba

    Qwen LLM refers to a family of large language models (LLMs) developed by Alibaba Cloud's Damo Academy. These models are trained on a massive dataset of text and code, allowing them to understand and generate human-like text, translate languages, write different kinds of creative content, and answer your questions in an informative way. Here are some key features of Qwen LLMs: Variety of sizes: The Qwen series ranges from 1.8 billion to 72 billion parameters, offering options for different needs and performance levels. Open source: Some versions of Qwen are open-source, which means their code is publicly available for anyone to use and modify. Multilingual support: Qwen can understand and translate multiple languages, including English, Chinese, and French. Diverse capabilities: Besides generation and translation, Qwen models can be used for tasks like question answering, text summarization, and code generation.
    Starting Price: Free
  • 18
    GPT-4o mini
    A small model with superior textual intelligence and multimodal reasoning. GPT-4o mini enables a broad range of tasks with its low cost and latency, such as applications that chain or parallelize multiple model calls (e.g., calling multiple APIs), pass a large volume of context to the model (e.g., full code base or conversation history), or interact with customers through fast, real-time text responses (e.g., customer support chatbots). Today, GPT-4o mini supports text and vision in the API, with support for text, image, video and audio inputs and outputs coming in the future. The model has a context window of 128K tokens, supports up to 16K output tokens per request, and has knowledge up to October 2023. Thanks to the improved tokenizer shared with GPT-4o, handling non-English text is now even more cost effective.
  • 19
    Gemini Flash
    Gemini Flash is an advanced large language model (LLM) from Google, specifically designed for high-speed, low-latency language processing tasks. Part of Google DeepMind’s Gemini series, Gemini Flash is tailored to provide real-time responses and handle large-scale applications, making it ideal for interactive AI-driven experiences such as customer support, virtual assistants, and live chat solutions. Despite its speed, Gemini Flash doesn’t compromise on quality; it’s built on sophisticated neural architectures that ensure responses remain contextually relevant, coherent, and precise. Google has incorporated rigorous ethical frameworks and responsible AI practices into Gemini Flash, equipping it with guardrails to manage and mitigate biased outputs, ensuring it aligns with Google’s standards for safe and inclusive AI. With Gemini Flash, Google empowers businesses and developers to deploy responsive, intelligent language tools that can meet the demands of fast-paced environments.
  • 20
    OpenAI o1-pro
    OpenAI o1-pro is the enhanced version of OpenAI's o1 model, designed to tackle more complex and demanding tasks with greater reliability. It features significant performance improvements over its predecessor, the o1 preview, with a notable 34% reduction in major errors and the ability to think 50% faster. This model excels in areas like math, physics, and coding, where it can provide detailed and accurate solutions. Additionally, the o1-pro mode can process multimodal inputs, including text and images, and is particularly adept at reasoning tasks that require deep thought and problem-solving. It's accessible through a ChatGPT Pro subscription, offering unlimited usage and enhanced capabilities for users needing advanced AI assistance.
    Starting Price: $200/month
  • 21
    Gemini 2.0
    Gemini 2.0 is an advanced AI-powered model developed by Google, designed to offer groundbreaking capabilities in natural language understanding, reasoning, and multimodal interactions. Building on the success of its predecessor, Gemini 2.0 integrates large language processing with enhanced problem-solving and decision-making abilities, enabling it to interpret and generate human-like responses with greater accuracy and nuance. Unlike traditional AI models, Gemini 2.0 is trained to handle multiple data types simultaneously, including text, images, and code, making it a versatile tool for research, business, education, and creative industries. Its core improvements include better contextual understanding, reduced bias, and a more efficient architecture that ensures faster, more reliable outputs. Gemini 2.0 is positioned as a major step forward in the evolution of AI, pushing the boundaries of human-computer interaction.
    Starting Price: Free
  • 22
    Claude Sonnet 4
    Claude Sonnet 4, the latest evolution of Anthropic’s language models, offers a significant upgrade in coding, reasoning, and performance. Designed for diverse use cases, Sonnet 4 builds upon the success of its predecessor, Claude Sonnet 3.7, delivering more precise responses and better task execution. With a state-of-the-art 72.7% performance on the SWE-bench, it stands out in agentic scenarios, offering enhanced steerability and clear reasoning capabilities. Whether handling software development, multi-feature app creation, or complex problem-solving, Claude Sonnet 4 ensures higher code quality, reduced errors, and a smoother development process.
    Starting Price: $3 / 1 million tokens (input)
  • 23
    Grok 3 Think
    Grok 3 Think, the latest iteration of xAI's AI model, is designed to enhance reasoning capabilities using advanced reinforcement learning. It can think through complex problems for extended periods, from seconds to minutes, improving its answers by backtracking, exploring alternatives, and refining its approach. This model, trained on an unprecedented scale, delivers remarkable performance in tasks such as mathematics, coding, and world knowledge, showing impressive results in competitions like the American Invitational Mathematics Examination. Grok 3 Think not only provides accurate solutions but also offers transparency by allowing users to inspect the reasoning behind its decisions, setting a new standard for AI problem-solving.
    Starting Price: Free
  • 24
    Gemini 2.5 Pro
    Gemini 2.5 Pro is an advanced AI model designed to handle complex tasks with enhanced reasoning and coding capabilities. Leading common benchmarks, it excels in math, science, and coding, demonstrating strong performance in tasks like web app creation and code transformation. Built on the Gemini 2.5 foundation, it features a 1 million token context window, enabling it to process vast datasets from various sources such as text, images, and code repositories. Available now in Google AI Studio, Gemini 2.5 Pro is optimized for more sophisticated applications and supports advanced users with improved performance for complex problem-solving.
    Starting Price: $19.99/month
  • 25
    GPT-4V (Vision)
    GPT-4 with vision (GPT-4V) enables users to instruct GPT-4 to analyze image inputs provided by the user, and is the latest capability we are making broadly available. Incorporating additional modalities (such as image inputs) into large language models (LLMs) is viewed by some as a key frontier in artificial intelligence research and development. Multimodal LLMs offer the possibility of expanding the impact of language-only systems with novel interfaces and capabilities, enabling them to solve new tasks and provide novel experiences for their users. In this system card, we analyze the safety properties of GPT-4V. Our work on safety for GPT-4V builds on the work done for GPT-4 and here we dive deeper into the evaluations, preparation, and mitigation work done specifically for image inputs.
  • 26
    OpenAI o1
    OpenAI o1 represents a new series of AI models designed by OpenAI, focusing on enhanced reasoning capabilities. These models, including o1-preview and o1-mini, are trained using a novel reinforcement learning approach to spend more time "thinking" through problems before providing answers. This approach allows o1 to excel in complex problem-solving tasks in areas like coding, mathematics, and science, outperforming previous models like GPT-4o in certain benchmarks. The o1 series aims to tackle challenges that require deeper thought processes, marking a significant step towards AI systems that can reason more like humans, although it's still in the preview stage with ongoing improvements and evaluations.
  • 27
    OpenAI o1-mini
    OpenAI o1-mini is a new, cost-effective AI model designed for enhanced reasoning, particularly excelling in STEM fields like mathematics and coding. It's part of the o1 series, which focuses on solving complex problems by spending more time "thinking" through solutions. Despite being smaller and 80% cheaper than its sibling, the o1-preview, o1-mini performs competitively in coding tasks and mathematical reasoning, making it an accessible option for developers and enterprises looking for efficient AI solutions.
  • 28
    ChatGPT Pro
    As AI becomes more advanced, it will solve increasingly complex and critical problems. It also takes significantly more compute to power these capabilities. ChatGPT Pro is a $200 monthly plan that enables scaled access to the best of OpenAI’s models and tools. This plan includes unlimited access to our smartest model, OpenAI o1, as well as to o1-mini, GPT-4o, and Advanced Voice. It also includes o1 pro mode, a version of o1 that uses more compute to think harder and provide even better answers to the hardest problems. In the future, we expect to add more powerful, compute-intensive productivity features to this plan. ChatGPT Pro provides access to a version of our most intelligent model that thinks longer for the most reliable responses. In evaluations from external expert testers, o1 pro mode produces more reliably accurate and comprehensive responses, especially in areas like data science, programming, and case law analysis.
    Starting Price: $200/month
  • 29
    Grok 4
    Grok 4 is the latest AI model from Elon Musk’s xAI, marking a significant advancement in AI reasoning and natural language understanding. Developed on the Colossus supercomputer, Grok 4 supports multimodal inputs including text and images, with plans to add video capabilities soon. It features enhanced precision in language tasks and has demonstrated superior performance in scientific reasoning and visual problem-solving compared to other leading AI models. Designed for developers, researchers, and technical users, Grok 4 offers powerful tools for complex tasks. The model incorporates improved moderation to address previous concerns about biased or problematic outputs. Grok 4 represents a major leap forward in AI’s ability to understand and generate human-like responses.
  • 30
    Gemini Pro
    Gemini is natively multimodal, which gives you the potential to transform any type of input into any type of output. We've built Gemini responsibly from the start, incorporating safeguards and working together with partners to make it safer and more inclusive. Integrate Gemini models into your applications with Google AI Studio and Google Cloud Vertex AI.
  • 31
    Gemini 2.0 Flash
    The Gemini 2.0 Flash AI model represents the next generation of high-speed, intelligent computing, designed to set new benchmarks in real-time language processing and decision-making. Building on the robust foundation of its predecessor, it incorporates enhanced neural architecture and breakthrough advancements in optimization, enabling even faster and more accurate responses. Gemini 2.0 Flash is designed for applications requiring instantaneous processing and adaptability, such as live virtual assistants, automated trading systems, and real-time analytics. Its lightweight, efficient design ensures seamless deployment across cloud, edge, and hybrid environments, while its improved contextual understanding and multitasking capabilities make it a versatile tool for tackling complex, dynamic workflows with precision and speed.
  • 32
    Gemini Nano
    Gemini Nano from Google is a lightweight, energy-efficient AI model designed for high performance in compact, resource-constrained environments. Tailored for edge computing and mobile applications, Gemini Nano combines Google's advanced AI architecture with cutting-edge optimization techniques to deliver seamless performance without compromising speed or accuracy. Despite its compact size, it excels in tasks like voice recognition, natural language processing, real-time translation, and personalized recommendations. With a focus on privacy and efficiency, Gemini Nano processes data locally, minimizing reliance on cloud infrastructure while maintaining robust security. Its adaptability and low power consumption make it an ideal choice for smart devices, IoT ecosystems, and on-the-go AI solutions.
  • 33
    Gemini 1.5 Pro
    The Gemini 1.5 Pro AI model is a state-of-the-art language model designed to deliver highly accurate, context-aware, and human-like responses across a variety of applications. Built with cutting-edge neural architecture, it excels in natural language understanding, generation, and reasoning tasks. The model is fine-tuned for versatility, supporting tasks like content creation, code generation, data analysis, and complex problem-solving. Its advanced algorithms ensure nuanced comprehension, enabling it to adapt to different domains and conversational styles seamlessly. With a focus on scalability and efficiency, the Gemini 1.5 Pro is optimized for both small-scale implementations and enterprise-level integrations, making it a powerful tool for enhancing productivity and innovation.
  • 34
    Gemini 1.5 Flash
    The Gemini 1.5 Flash AI model is an advanced, high-speed language model engineered for lightning-fast processing and real-time responsiveness. Designed to excel in dynamic and time-sensitive applications, it combines streamlined neural architecture with cutting-edge optimization techniques to deliver exceptional performance without compromising on accuracy. Gemini 1.5 Flash is tailored for scenarios requiring rapid data processing, instant decision-making, and seamless multitasking, making it ideal for chatbots, customer support systems, and interactive applications. Its lightweight yet powerful design ensures it can be deployed efficiently across a range of platforms, from cloud-based environments to edge devices, enabling businesses to scale their operations with unmatched agility.
  • 35
    Qwen2.5

    Qwen2.5

    Alibaba

    Qwen2.5 is an advanced multimodal AI model designed to provide highly accurate and context-aware responses across a wide range of applications. It builds on the capabilities of its predecessors, integrating cutting-edge natural language understanding with enhanced reasoning, creativity, and multimodal processing. Qwen2.5 can seamlessly analyze and generate text, interpret images, and interact with complex data to deliver precise solutions in real time. Optimized for adaptability, it excels in personalized assistance, data analysis, creative content generation, and academic research, making it a versatile tool for professionals and everyday users alike. Its user-centric design emphasizes transparency, efficiency, and alignment with ethical AI practices.
    Starting Price: Free
  • 36
    Grok

    Grok

    xAI

    Grok is an AI modeled after the Hitchhiker’s Guide to the Galaxy, so intended to answer almost anything and, far harder, even suggest what questions to ask! Grok is designed to answer questions with a bit of wit and has a rebellious streak, so please don’t use it if you hate humor! A unique and fundamental advantage of Grok is that it has real-time knowledge of the world via the 𝕏 platform. It will also answer spicy questions that are rejected by most other AI systems.
    Starting Price: Free
  • 37
    JinaChat

    JinaChat

    Jina AI

    Experience JinaChat, a pioneering LLM service tailored for pro users. JinaChat ushers in a new era of multimodal chat capabilities, extending beyond text to incorporate images and more. Delight in our offer of free short interactions under 100 tokens. Our API empowers developers to leverage long conversation histories and eliminate redundant prompts to build complex applications. Dive headfirst into the future of LLM services with JinaChat, where conversations are multimodal, long-memory, and affordable. Modern LLM applications often hinge on lengthy prompts or extensive memory, leading to high costs when similar prompts are repeatedly sent to the server with only minor changes. JinaChat's API solves this problem by letting you carry forward previous conversations without resending the entire prompt. This saves you both time and money, making it the perfect tool for developing complex applications like AutoGPT.
    Starting Price: $9.99 per month
  • 38
    Ferret

    Ferret

    Apple

    An End-to-End MLLM that Accept Any-Form Referring and Ground Anything in Response. Ferret Model - Hybrid Region Representation + Spatial-aware Visual Sampler enable fine-grained and open-vocabulary referring and grounding in MLLM. GRIT Dataset (~1.1M) - A Large-scale, Hierarchical, Robust ground-and-refer instruction tuning dataset. Ferret-Bench - A multimodal evaluation benchmark that jointly requires Referring/Grounding, Semantics, Knowledge, and Reasoning.
    Starting Price: Free
  • 39
    Grok 2
    Grok-2, the latest iteration in AI technology, is a marvel of modern engineering, designed to push the boundaries of what artificial intelligence can achieve. Inspired by the wit and wisdom of the Hitchhiker's Guide to the Galaxy and the efficiency of JARVIS from Iron Man, Grok-2 is not just another AI; it's a companion in the truest sense. With an expanded knowledge base that stretches up to the recent past, Grok-2 offers insights with a touch of humor and an outside perspective on humanity, making it uniquely engaging. Its capabilities include answering nearly any question with maximum helpfulness, often providing solutions that are both innovative and outside the conventional box. Grok-2's design emphasizes truthfulness, avoiding the pitfalls of woke culture, and strives to be maximally truthful, making it a reliable source of information and entertainment in an increasingly complex world.
    Starting Price: Free
  • 40
    Llama 3.2
    The open-source AI model you can fine-tune, distill and deploy anywhere is now available in more versions. Choose from 1B, 3B, 11B or 90B, or continue building with Llama 3.1. Llama 3.2 is a collection of large language models (LLMs) pretrained and fine-tuned in 1B and 3B sizes that are multilingual text only, and 11B and 90B sizes that take both text and image inputs and output text. Develop highly performative and efficient applications from our latest release. Use our 1B or 3B models for on device applications such as summarizing a discussion from your phone or calling on-device tools like calendar. Use our 11B or 90B models for image use cases such as transforming an existing image into something new or getting more information from an image of your surroundings.
    Starting Price: Free
  • 41
    LLaVA

    LLaVA

    LLaVA

    LLaVA (Large Language-and-Vision Assistant) is an innovative multimodal model that integrates a vision encoder with the Vicuna language model to facilitate comprehensive visual and language understanding. Through end-to-end training, LLaVA exhibits impressive chat capabilities, emulating the multimodal functionalities of models like GPT-4. Notably, LLaVA-1.5 has achieved state-of-the-art performance across 11 benchmarks, utilizing publicly available data and completing training in approximately one day on a single 8-A100 node, surpassing methods that rely on billion-scale datasets. The development of LLaVA involved the creation of a multimodal instruction-following dataset, generated using language-only GPT-4. This dataset comprises 158,000 unique language-image instruction-following samples, including conversations, detailed descriptions, and complex reasoning tasks. This data has been instrumental in training LLaVA to perform a wide array of visual and language tasks effectively.
    Starting Price: Free
  • 42
    Llama 3.3
    Llama 3.3 is the latest iteration in the Llama series of language models, developed to push the boundaries of AI-powered understanding and communication. With enhanced contextual reasoning, improved language generation, and advanced fine-tuning capabilities, Llama 3.3 is designed to deliver highly accurate, human-like responses across diverse applications. This version features a larger training dataset, refined algorithms for nuanced comprehension, and reduced biases compared to its predecessors. Llama 3.3 excels in tasks such as natural language understanding, creative writing, technical explanation, and multilingual communication, making it an indispensable tool for businesses, developers, and researchers. Its modular architecture allows for customizable deployment in specialized domains, ensuring versatility and performance at scale.
    Starting Price: Free
  • 43
    Janus-Pro-7B
    Janus-Pro-7B is an innovative open-source multimodal AI model from DeepSeek, designed to excel in both understanding and generating content across text, images, and videos. It leverages a unique autoregressive architecture with separate pathways for visual encoding, enabling high performance in tasks ranging from text-to-image generation to complex visual comprehension. This model outperforms competitors like DALL-E 3 and Stable Diffusion in various benchmarks, offering scalability with versions from 1 billion to 7 billion parameters. Licensed under the MIT License, Janus-Pro-7B is freely available for both academic and commercial use, providing a significant leap in AI capabilities while being accessible on major operating systems like Linux, MacOS, and Windows through Docker.
    Starting Price: Free
  • 44
    Falcon 2

    Falcon 2

    Technology Innovation Institute (TII)

    Falcon 2 11B is an open-source, multilingual, and multimodal AI model, uniquely equipped with vision-to-language capabilities. It surpasses Meta’s Llama 3 8B and delivers performance on par with Google’s Gemma 7B, as independently confirmed by the Hugging Face Leaderboard. Looking ahead, the next phase of development will integrate a 'Mixture of Experts' approach to further enhance Falcon 2’s capabilities, pushing the boundaries of AI innovation.
    Starting Price: Free
  • 45
    Falcon 3

    Falcon 3

    Technology Innovation Institute (TII)

    Falcon 3 is an open-source large language model (LLM) developed by the Technology Innovation Institute (TII) to make advanced AI accessible to a broader audience. Designed for efficiency, it operates seamlessly on lightweight devices, including laptops, without compromising performance. The Falcon 3 ecosystem comprises four scalable models, each tailored to diverse applications, and supports multiple languages while optimizing resource usage. This latest iteration in TII's LLM series achieves state-of-the-art results in reasoning, language understanding, instruction following, code, and mathematics tasks. By combining high performance with resource efficiency, Falcon 3 aims to democratize access to AI, empowering users across various sectors to leverage advanced technology without the need for extensive computational resources.
    Starting Price: Free
  • 46
    Qwen2.5-VL

    Qwen2.5-VL

    Alibaba

    Qwen2.5-VL is the latest vision-language model from the Qwen series, representing a significant advancement over its predecessor, Qwen2-VL. This model excels in visual understanding, capable of recognizing a wide array of objects, including text, charts, icons, graphics, and layouts within images. It functions as a visual agent, capable of reasoning and dynamically directing tools, enabling applications such as computer and phone usage. Qwen2.5-VL can comprehend videos exceeding one hour in length and can pinpoint relevant segments within them. Additionally, it accurately localizes objects in images by generating bounding boxes or points and provides stable JSON outputs for coordinates and attributes. The model also supports structured outputs for data like scanned invoices, forms, and tables, benefiting sectors such as finance and commerce. Available in base and instruct versions across 3B, 7B, and 72B sizes, Qwen2.5-VL is accessible through platforms like Hugging Face and ModelScope.
    Starting Price: Free
  • 47
    Llama 4 Behemoth
    Llama 4 Behemoth is Meta's most powerful AI model to date, featuring a massive 288 billion active parameters. It excels in multimodal tasks, outperforming previous models like GPT-4.5 and Gemini 2.0 Pro across multiple STEM-focused benchmarks such as MATH-500 and GPQA Diamond. As the teacher model for the Llama 4 series, Behemoth sets the foundation for models like Llama 4 Maverick and Llama 4 Scout. While still in training, Llama 4 Behemoth demonstrates unmatched intelligence, pushing the boundaries of AI in fields like math, multilinguality, and image understanding.
    Starting Price: Free
  • 48
    Llama 4 Maverick
    Llama 4 Maverick is one of the most advanced multimodal AI models from Meta, featuring 17 billion active parameters and 128 experts. It surpasses its competitors like GPT-4o and Gemini 2.0 Flash in a broad range of benchmarks, especially in tasks related to coding, reasoning, and multilingual capabilities. Llama 4 Maverick combines image and text understanding, enabling it to deliver industry-leading results in image-grounding tasks and precise, high-quality output. With its efficient performance at a reduced parameter size, Maverick offers exceptional value, especially in general assistant and chat applications.
    Starting Price: Free
  • 49
    Llama 4 Scout
    Llama 4 Scout is a powerful 17 billion active parameter multimodal AI model that excels in both text and image processing. With an industry-leading context length of 10 million tokens, it outperforms its predecessors, including Llama 3, in tasks such as multi-document summarization and parsing large codebases. Llama 4 Scout is designed to handle complex reasoning tasks while maintaining high efficiency, making it perfect for use cases requiring long-context comprehension and image grounding. It offers cutting-edge performance in image-related tasks and is particularly well-suited for applications requiring both text and visual understanding.
    Starting Price: Free
  • 50
    GPT-4.1

    GPT-4.1

    OpenAI

    GPT-4.1 is an advanced AI model from OpenAI, designed to enhance performance across key tasks such as coding, instruction following, and long-context comprehension. With a large context window of up to 1 million tokens, GPT-4.1 can process and understand extensive datasets, making it ideal for tasks like software development, document analysis, and AI agent workflows. Available through the API, GPT-4.1 offers significant improvements over previous models, excelling at real-world applications where efficiency and accuracy are crucial.
    Starting Price: $2 per 1M tokens (input)
  • 51
    GPT-4.1 mini
    GPT-4.1 mini is a compact version of OpenAI’s powerful GPT-4.1 model, designed to provide high performance while significantly reducing latency and cost. With a smaller size and optimized architecture, GPT-4.1 mini still delivers impressive results in tasks such as coding, instruction following, and long-context processing. It supports up to 1 million tokens of context, making it an efficient solution for applications that require fast responses without sacrificing accuracy or depth.
    Starting Price: $0.40 per 1M tokens (input)
  • 52
    GPT-4.1 nano
    GPT-4.1 nano is the smallest and most efficient version of OpenAI's GPT-4.1 model, optimized for low-latency, cost-effective AI processing. Despite its compact size, GPT-4.1 nano delivers strong performance with a 1 million token context window, making it ideal for applications like classification, autocompletion, and smaller-scale tasks that require fast responses. It provides a highly efficient solution for businesses and developers who need an AI model that balances speed, cost, and performance.
    Starting Price: $0.10 per 1M tokens (input)
  • 53
    DeepSeek-VL

    DeepSeek-VL

    DeepSeek

    DeepSeek-VL is an open source Vision-Language (VL) model designed for real-world vision and language understanding applications. Our approach is structured around three key dimensions: We strive to ensure our data is diverse, scalable, and extensively covers real-world scenarios, including web screenshots, PDFs, OCR, charts, and knowledge-based content, aiming for a comprehensive representation of practical contexts. Further, we create a use case taxonomy from real user scenarios and construct an instruction tuning dataset accordingly. The fine-tuning with this dataset substantially improves the model's user experience in practical applications. Considering efficiency and the demands of most real-world scenarios, DeepSeek-VL incorporates a hybrid vision encoder that efficiently processes high-resolution images (1024 x 1024), while maintaining a relatively low computational overhead.
    Starting Price: Free
  • 54
    ChatGPT Enterprise
    Enterprise-grade security & privacy and the most powerful version of ChatGPT yet. 1. Customer prompts or data are not used for training models 2. Data encryption at rest (AES-256) and in transit (TLS 1.2+) 3. SOC 2 compliant 4. Dedicated admin console and easy bulk member management 5. SSO and Domain Verification 6. Analytics dashboard to understand usage 7. Unlimited, high-speed access to GPT-4 and Advanced Data Analysis* 8. 32k token context windows for 4X longer inputs and memory 9. Shareable chat templates for your company to collaborate
    Starting Price: $60/user/month
  • 55
    GPT-5

    GPT-5

    OpenAI

    GPT-5 is the anticipated next iteration of OpenAI's Generative Pre-trained Transformer, a large language model (LLM) still under development. LLMs are trained on massive amounts of text data and are able to generate realistic and coherent text, translate languages, write different kinds of creative content, and answer your questions in an informative way. It's not publicly available yet. OpenAI hasn't announced a release date, but some speculate it could be launched sometime in 2024. It's expected to be even more powerful than its predecessor, GPT-4. GPT-4 is already impressive, capable of generating human-quality text, translating languages, and writing different kinds of creative content. GPT-5 is expected to take these abilities even further, with better reasoning, factual accuracy, and ability to follow instructions.
    Starting Price: $0.0200 per 1000 tokens
  • 56
    Pixtral Large

    Pixtral Large

    Mistral AI

    Pixtral Large is a 124-billion-parameter open-weight multimodal model developed by Mistral AI, building upon their Mistral Large 2 architecture. It integrates a 123-billion-parameter multimodal decoder with a 1-billion-parameter vision encoder, enabling advanced understanding of documents, charts, and natural images while maintaining leading text comprehension capabilities. With a context window of 128,000 tokens, Pixtral Large can process at least 30 high-resolution images simultaneously. The model has demonstrated state-of-the-art performance on benchmarks such as MathVista, DocVQA, and VQAv2, surpassing models like GPT-4o and Gemini-1.5 Pro. Pixtral Large is available under the Mistral Research License for research and educational use, and under the Mistral Commercial License for commercial applications.
    Starting Price: Free
  • 57
    OpenAI o3
    OpenAI o3 is an advanced AI model designed to enhance reasoning capabilities by breaking down complex instructions into smaller, more manageable steps. It offers significant improvements over previous AI iterations, excelling in coding tasks, competitive programming, and achieving high scores in mathematics and science benchmarks. Available for widespread use, OpenAI o3 supports advanced AI-driven problem-solving and decision-making processes. The model incorporates deliberative alignment techniques to ensure its responses align with established safety and ethical guidelines, making it a powerful tool for developers, researchers, and enterprises seeking sophisticated AI solutions.
    Starting Price: $2 per 1 million tokens
  • 58
    Qwen2.5-1M

    Qwen2.5-1M

    Alibaba

    Qwen2.5-1M is an open-source language model developed by the Qwen team, designed to handle context lengths of up to one million tokens. This release includes two model variants, Qwen2.5-7B-Instruct-1M and Qwen2.5-14B-Instruct-1M, marking the first time Qwen models have been upgraded to support such extensive context lengths. To facilitate efficient deployment, the team has also open-sourced an inference framework based on vLLM, integrated with sparse attention methods, enabling processing of 1M-token inputs with a 3x to 7x speed improvement. Comprehensive technical details, including design insights and ablation experiments, are available in the accompanying technical report.
    Starting Price: Free
  • 59
    Grok 3 mini
    Grok-3 Mini, crafted by xAI, is an agile and insightful AI companion tailored for users who need quick, yet thorough answers to their questions. This smaller version maintains the essence of the Grok series, offering an external, often humorous perspective on human affairs with a focus on efficiency. Designed for those on the move or with limited resources, Grok-3 Mini delivers the same level of curiosity and helpfulness in a more compact form. It's adept at handling a broad spectrum of questions, providing succinct insights without compromising on depth or accuracy, making it a perfect tool for fast-paced, modern-day inquiries.
    Starting Price: Free
  • 60
    ERNIE 4.5
    ERNIE 4.5 is a cutting-edge conversational AI platform developed by Baidu, leveraging advanced natural language processing (NLP) models to enable highly sophisticated human-like interactions. The platform is part of Baidu’s ERNIE (Enhanced Representation through Knowledge Integration) series, which integrates multimodal capabilities, including text, image, and voice. ERNIE 4.5 enhances the ability of AI models to understand complex context and deliver more accurate, nuanced responses, making it suitable for various applications, from customer service and virtual assistants to content creation and enterprise-level automation.
    Starting Price: $0.55 per 1M tokens
  • 61
    ERNIE X1 Turbo
    ERNIE X1 Turbo, developed by Baidu, is an advanced deep reasoning AI model introduced at the Baidu Create 2025 conference. Designed to handle complex multi-step tasks such as problem-solving, literary creation, and code generation, this model outperforms competitors like DeepSeek R1 in terms of reasoning abilities. With a focus on multimodal capabilities, ERNIE X1 Turbo supports text, audio, and image processing, making it an incredibly versatile AI solution. Despite its cutting-edge technology, it is priced at just a fraction of the cost of other top-tier models, offering a high-value solution for businesses and developers.
    Starting Price: $0.14 per 1M tokens
  • 62
    Gemma 3n

    Gemma 3n

    Google DeepMind

    Gemma 3n is our state-of-the-art open multimodal model, engineered for on-device performance and efficiency. Made for responsive, low-footprint local inference, Gemma 3n empowers a new wave of intelligent, on-the-go applications. It analyzes and responds to combined images and text, with video and audio coming soon. Build intelligent, interactive features that put user privacy first and work reliably offline. Mobile-first architecture, with a significantly reduced memory footprint. Co-designed by Google's mobile hardware teams and industry leaders. 4B active memory footprint with the ability to create submodels for quality-latency tradeoffs. Gemma 3n is our first open model built on this groundbreaking, shared architecture, allowing developers to begin experimenting with this technology today in an early preview.
  • 63
    OpenAI o3-pro
    OpenAI’s o3-pro is a high-performance reasoning model designed for tasks that require deep analysis and precision. It is available exclusively to ChatGPT Pro and Team subscribers, succeeding the earlier o1-pro model. The model excels in complex fields like mathematics, science, and coding by employing detailed step-by-step reasoning. It integrates advanced tools such as real-time web search, file analysis, Python execution, and visual input processing. While powerful, o3-pro has slower response times and lacks support for features like image generation and temporary chats. Despite these trade-offs, o3-pro demonstrates superior clarity, accuracy, and adherence to instructions compared to its predecessor.
    Starting Price: $20 per 1 million tokens
  • 64
    Amazon Nova
    Amazon Nova is a new generation of state-of-the-art (SOTA) foundation models (FMs) that deliver frontier intelligence and industry leading price-performance, available exclusively on Amazon Bedrock. Amazon Nova Micro, Amazon Nova Lite, and Amazon Nova Pro are understanding models that accept text, image, or video inputs and generate text output. They provide a broad selection of capability, accuracy, speed, and cost operation points. Amazon Nova Micro is a text only model that delivers the lowest latency responses at very low cost. Amazon Nova Lite is a very low-cost multimodal model that is lightning fast for processing image, video, and text inputs. Amazon Nova Pro is a highly capable multimodal model with the best combination of accuracy, speed, and cost for a wide range of tasks. Amazon Nova Pro’s capabilities, coupled with its industry-leading speed and cost efficiency, makes it a compelling model for almost any task, including video summarization, Q&A, math & more.
  • 65
    Amazon Nova Canvas
    Amazon Nova Canvas is a state-of-the-art image generation model that creates professional grade images from text or images provided in prompts. Amazon Nova Canvas also provides features that make it easy to edit images using text inputs, controls for adjusting color scheme and layout, and built-in controls to support safe and responsible use of AI.
  • 66
    Amazon Nova Reel
    Amazon Nova Reel is a state-of-the-art video generation model that allows customers to easily create high quality video from text and images. Amazon Nova Reel supports use of natural language prompts to control visual style and pacing, including camera motion control, and built-in controls to support safe and responsible use of AI.
  • 67
    Gemini 2.0 Flash Thinking
    Gemini 2.0 Flash Thinking is an advanced AI model developed by Google DeepMind, designed to enhance reasoning capabilities by explicitly displaying its thought processes. This transparency allows the model to tackle complex problems more effectively and provides users with clear explanations of its decision-making steps. By showcasing its internal reasoning, Gemini 2.0 Flash Thinking not only improves performance but also offers greater explainability, making it a valuable tool for applications requiring deep understanding and trust in AI-driven solutions.
  • 68
    Gemini 2.0 Flash-Lite
    Gemini 2.0 Flash-Lite is Google DeepMind's lighter AI model, designed to offer a cost-effective solution without compromising performance. As the most economical model in the Gemini 2.0 lineup, Flash-Lite is tailored for developers and businesses seeking efficient AI capabilities at a lower cost. It supports multimodal inputs and features a context window of one million tokens, making it suitable for a variety of applications. Flash-Lite is currently available in public preview, allowing users to explore its potential in enhancing their AI-driven projects.
  • 69
    Gemini 2.0 Pro
    Gemini 2.0 Pro is Google DeepMind's most advanced AI model, designed to excel in complex tasks such as coding and intricate problem-solving. Currently in its experimental phase, it features an extensive context window of two million tokens, enabling it to process and analyze vast amounts of information efficiently. A standout feature of Gemini 2.0 Pro is its seamless integration with external tools like Google Search and code execution environments, enhancing its ability to provide accurate and comprehensive responses. This model represents a significant advancement in AI capabilities, offering developers and users a powerful resource for tackling sophisticated challenges.
  • 70
    ERNIE X1
    ERNIE X1 is an advanced conversational AI model developed by Baidu as part of their ERNIE (Enhanced Representation through Knowledge Integration) series. Unlike previous versions, ERNIE X1 is designed to be more efficient in understanding and generating human-like responses. It incorporates cutting-edge machine learning techniques to handle complex queries, making it capable of not only processing text but also generating images and engaging in multimodal communication. ERNIE X1 is often used in natural language processing applications such as chatbots, virtual assistants, and enterprise automation, offering significant improvements in accuracy, contextual understanding, and response quality.
    Starting Price: $0.28 per 1M tokens
  • 71
    Magma

    Magma

    Microsoft

    Magma is a cutting-edge multimodal foundation model developed by Microsoft, designed to understand and act in both digital and physical environments. The model excels at interpreting visual and textual inputs, allowing it to perform tasks such as interacting with user interfaces or manipulating real-world objects. Magma builds on the foundation models paradigm by leveraging diverse datasets to improve its ability to generalize to new tasks and environments. It represents a significant leap toward developing AI agents capable of handling a broad range of general-purpose tasks, bridging the gap between digital and physical actions.
  • 72
    Gemini 2.5 Flash
    Gemini 2.5 Flash is a powerful, low-latency AI model introduced by Google on Vertex AI, designed for high-volume applications where speed and cost-efficiency are key. It delivers optimized performance for use cases like customer service, virtual assistants, and real-time data processing. With its dynamic reasoning capabilities, Gemini 2.5 Flash automatically adjusts processing time based on query complexity, offering granular control over the balance between speed, accuracy, and cost. It is ideal for businesses needing scalable AI solutions that maintain quality and efficiency.
  • 73
    Amazon Nova Lite
    Amazon Nova Lite is a cost-efficient, multimodal AI model designed for rapid processing of image, video, and text inputs. It delivers impressive performance at an affordable price, making it ideal for interactive, high-volume applications where cost is a key consideration. With support for fine-tuning across text, image, and video inputs, Nova Lite excels in a variety of tasks that require fast, accurate responses, such as content generation and real-time analytics.
  • 74
    HunyuanCustom
    HunyuanCustom is a multi-modal customized video generation framework that emphasizes subject consistency while supporting image, audio, video, and text conditions. Built upon HunyuanVideo, it introduces a text-image fusion module based on LLaVA for enhanced multi-modal understanding, along with an image ID enhancement module that leverages temporal concatenation to reinforce identity features across frames. To enable audio- and video-conditioned generation, it further proposes modality-specific condition injection mechanisms, an AudioNet module that achieves hierarchical alignment via spatial cross-attention, and a video-driven injection module that integrates latent-compressed conditional video through a patchify-based feature-alignment network. Extensive experiments on single- and multi-subject scenarios demonstrate that HunyuanCustom significantly outperforms state-of-the-art open and closed source methods in terms of ID consistency, realism, and text-video alignment.
  • 75
    Molmo
    Molmo is a family of open, state-of-the-art multimodal AI models developed by the Allen Institute for AI (Ai2). These models are designed to bridge the gap between open and proprietary systems, achieving competitive performance across a wide range of academic benchmarks and human evaluations. Unlike many existing multimodal models that rely heavily on synthetic data from proprietary systems, Molmo is trained entirely on open data, ensuring transparency and reproducibility. A key innovation in Molmo's development is the introduction of PixMo, a novel dataset comprising highly detailed image captions collected from human annotators using speech-based descriptions, as well as 2D pointing data that enables the models to answer questions using both natural language and non-verbal cues. This allows Molmo to interact with its environment in more nuanced ways, such as pointing to objects within images, thereby enhancing its applicability in fields like robotics and augmented reality.
  • 76
    Gemini 2.5 Flash-Lite
    Gemini 2.5 is Google DeepMind’s latest generation AI model family, designed to deliver advanced reasoning and native multimodality with a long context window. It improves performance and accuracy by reasoning through its thoughts before responding. The model offers different versions tailored for complex coding tasks, fast everyday performance, and cost-efficient high-volume workloads. Gemini 2.5 supports multiple data types including text, images, video, audio, and PDFs, enabling versatile AI applications. It features adaptive thinking budgets and fine-grained control for developers to balance cost and output quality. Available via Google AI Studio and Gemini API, Gemini 2.5 powers next-generation AI experiences.
  • 77
    Grok 4 Heavy
    Grok 4 Heavy is the most powerful AI model offered by xAI, designed as a multi-agent system to deliver cutting-edge reasoning and intelligence. Built on the Colossus supercomputer, it achieves a 50% score on the challenging HLE benchmark, outperforming many competitors. This advanced model supports multimodal inputs including text and images, with plans to add video capabilities. Grok 4 Heavy targets power users such as developers, researchers, and technical enthusiasts who require top-tier AI performance. Access is provided through the premium “SuperGrok Heavy” subscription priced at $300 per month. xAI has enhanced moderation and removed problematic system prompts to ensure responsible and ethical AI use.
  • 78
    Reka

    Reka

    Reka

    Our enterprise-grade multimodal assistant carefully designed with privacy, security, and efficiency in mind. We train Yasa to read text, images, videos, and tabular data, with more modalities to come. Use it to generate ideas for creative tasks, get answers to basic questions, or derive insights from your internal data. Generate, train, compress, or deploy on-premise with a few simple commands. Use our proprietary algorithms to personalize our model to your data and use cases. We design proprietary algorithms involving retrieval, fine-tuning, self-supervised instruction tuning, and reinforcement learning to tune our model on your datasets.
  • 79
    VideoPoet
    VideoPoet is a simple modeling method that can convert any autoregressive language model or large language model (LLM) into a high-quality video generator. It contains a few simple components. An autoregressive language model learns across video, image, audio, and text modalities to autoregressively predict the next video or audio token in the sequence. A mixture of multimodal generative learning objectives are introduced into the LLM training framework, including text-to-video, text-to-image, image-to-video, video frame continuation, video inpainting and outpainting, video stylization, and video-to-audio. Furthermore, such tasks can be composed together for additional zero-shot capabilities. This simple recipe shows that language models can synthesize and edit videos with a high degree of temporal consistency.
  • 80
    OpenAI o3-mini
    OpenAI o3-mini is a lightweight version of the advanced o3 AI model, offering powerful reasoning capabilities in a more efficient and accessible package. Designed to break down complex instructions into smaller, manageable steps, o3-mini excels in coding tasks, competitive programming, and problem-solving in mathematics and science. This compact model provides the same high-level precision and logic as its larger counterpart but with reduced computational requirements, making it ideal for use in resource-constrained environments. With built-in deliberative alignment, o3-mini ensures safe, ethical, and context-aware decision-making, making it a versatile tool for developers, researchers, and businesses seeking a balance between performance and efficiency.
  • 81
    Amazon Titan
    Amazon Titan is a series of advanced foundation models (FMs) from AWS, designed to enhance generative AI applications with high performance and flexibility. Built on AWS's 25 years of AI and machine learning experience, Titan models support a range of use cases such as text generation, summarization, semantic search, and image generation. Titan models are optimized for responsible AI use, incorporating built-in safety features and fine-tuning capabilities. They can be customized with your own data through Retrieval Augmented Generation (RAG) to improve accuracy and relevance, making them ideal for both general-purpose and specialized AI tasks.
  • 82
    OpenAI o3-mini-high
    The o3-mini-high model from OpenAI advances AI reasoning by refining deep problem-solving in coding, mathematics, and complex tasks. It features adaptive thinking time with adjustable reasoning modes (low, medium, high) to optimize performance based on task complexity. Outperforming the o1 series by 200 Elo points on Codeforces, it delivers high efficiency at a lower cost while maintaining speed and accuracy. As part of the o3 family, it pushes AI problem-solving boundaries while remaining accessible, offering a free tier and expanded limits for Plus subscribers.
  • 83
    ERNIE 4.5 Turbo
    ERNIE 4.5 Turbo, unveiled by Baidu at the 2025 Baidu Create conference, is a cutting-edge AI model designed to handle a variety of data inputs, including text, images, audio, and video. It offers powerful multimodal processing capabilities that enable it to perform complex tasks across industries such as customer support automation, content creation, and data analysis. With enhanced reasoning abilities and reduced hallucinations, ERNIE 4.5 Turbo ensures that businesses can achieve higher accuracy and reliability in AI-driven processes. Additionally, this model is priced at just 1% of GPT-4.5’s cost, making it a highly cost-effective alternative for enterprises looking for top-tier AI performance.

Multimodal Models Guide

Multimodal models are a type of artificial intelligence model that can process and understand information from multiple types of data. This could include text, images, audio, video, and more. The term "multimodal" refers to the ability of these models to handle different modes or types of data.

The concept behind multimodal models is not new. Humans naturally process information in a multimodal way. For example, when we communicate with others, we don't just rely on what they say. We also pay attention to their facial expressions, body language, tone of voice, and other non-verbal cues. Similarly, when we read a book or watch a movie, we don't just focus on the words or images alone. We also consider the context in which they are presented.

In the field of artificial intelligence (AI), multimodal models aim to mimic this human ability to process and integrate information from different sources. They do this by using various machine learning techniques that allow them to analyze and interpret different types of data simultaneously.

One key advantage of multimodal models is that they can provide more accurate and comprehensive insights than models that only handle one type of data. For instance, a model that analyzes both text and images can understand content better than a model that only analyzes text. This is because images often contain important information that is not captured in the text.

Another advantage is that multimodal models can handle complex tasks that require understanding multiple types of data at once. For example, they can be used for sentiment analysis in social media posts where both the text and accompanying images need to be analyzed together.

However, developing effective multimodal models can be challenging due to several reasons:

Firstly, different types of data may require different preprocessing steps before they can be fed into the model. For instance, text needs to be tokenized (broken down into individual words or phrases), while images need to be resized or normalized.

Secondly, different types of data may have different structures and characteristics. For example, text is typically sequential (i.e., the order of words matters), while images are typically spatial (i.e., the arrangement of pixels matters). This means that different types of layers or architectures may be needed in the model to handle these differences.

Thirdly, it can be difficult to combine or fuse the information from different types of data in a meaningful way. Some approaches involve extracting features from each type of data separately and then concatenating them together. Other approaches involve transforming all types of data into a common representation before combining them.

Despite these challenges, multimodal models hold great promise for advancing AI capabilities. They are already being used in various applications such as image captioning, video understanding, and emotion recognition. As research progresses and technology improves, we can expect to see even more sophisticated multimodal models that can understand and interpret our complex world just like humans do.

What Features Do Multimodal Models Provide?

Multimodal models are a type of machine learning model that can process and analyze data from multiple sources or modes. These models are designed to handle different types of data, such as text, images, audio, video, etc., simultaneously. They provide a more comprehensive understanding of the data by considering the relationships between different modalities. Here are some key features provided by multimodal models:

  1. Data Integration: Multimodal models can integrate and process various types of data simultaneously. This feature allows these models to capture more complex patterns and relationships in the data that might be missed by unimodal models (models that only consider one type of data).
  2. Improved Accuracy: By leveraging information from multiple sources, multimodal models often achieve higher accuracy than their unimodal counterparts. For instance, in sentiment analysis tasks, a multimodal model could use both text and audio inputs to better understand the sentiment expressed.
  3. Contextual Understanding: Multimodal models can provide a deeper understanding of context because they consider multiple perspectives on the same event or object. For example, in an image captioning task, a multimodal model could use both visual features from the image and textual information related to it for generating accurate captions.
  4. Robustness: Multimodal models tend to be more robust because they don't rely on a single source of information. If one modality is missing or unreliable, these models can still make predictions based on other available modalities.
  5. Flexibility: These models offer flexibility as they can work with any combination of modalities depending on what's most relevant for the task at hand.
  6. Fusion Techniques: Multimodal systems employ fusion techniques which combine information from different modalities at various stages - early fusion (combining at feature level), late fusion (combining at decision level), or hybrid fusion (a mix of early and late). This allows the model to leverage the strengths of each modality effectively.
  7. Cross-Modal Learning: Multimodal models can learn representations that link different modalities together, enabling cross-modal learning. This means they can use information from one modality to make predictions about another. For example, a multimodal model might learn to predict the sound an object makes based on its image.
  8. Semantic Understanding: By processing multiple types of data simultaneously, multimodal models can gain a more comprehensive understanding of semantic content. This is particularly useful in tasks like automatic video description generation, where understanding the semantics is crucial.
  9. Real-world Application: Multimodal models are highly applicable in real-world scenarios where data comes from various sources and formats. They are used in areas such as autonomous driving (processing visual, radar and lidar data), healthcare (analyzing medical images and patient records), and multimedia retrieval systems (searching for images or videos based on text queries).
  10. Transfer Learning: Multimodal models often benefit from transfer learning, where knowledge learned from one task or modality can be applied to another task or modality. This feature helps improve the efficiency and performance of these models.

Multimodal models offer a powerful approach for handling complex datasets with multiple types of inputs. Their ability to integrate diverse data sources into a unified framework makes them an essential tool in many machine learning applications.

Different Types of Multimodal Models

Multimodal models are machine learning models that can process and integrate multiple types of data, such as text, images, audio, and video. These models are designed to understand the complex relationships between different types of data and provide more accurate predictions or insights. Here are some different types of multimodal models:

  1. Text-Image Multimodal Models: These models combine textual and visual information to perform tasks like image captioning, visual question answering, or text-to-image synthesis. They analyze both the textual descriptions and the corresponding images to generate a comprehensive understanding.
  2. Audio-Visual Multimodal Models: These models integrate audio and visual data for tasks like speaker identification in videos, emotion recognition from facial expressions and voice tones, or sound source localization using video frames.
  3. Text-Audio Multimodal Models: These models use both textual content (like transcriptions) and audio signals for tasks such as speech recognition or sentiment analysis from spoken language.
  4. Video-Text Multimodal Models: These models combine video data with textual information for applications like automatic subtitle generation, video summarization, or action recognition in videos based on accompanying script.
  5. Sensor-Based Multimodal Models: In these models, various sensor data (like temperature readings, motion sensors, etc.) are combined with other modalities (like images or text) for tasks such as environmental monitoring or health tracking.
  6. Cross-Lingual Multimodal Models: These models deal with multiple languages along with other modalities like images or audio signals for tasks like multilingual image captioning or cross-lingual speech recognition.
  7. Sequential Multimodal Models: In these models, sequences of different modalities are processed over time for tasks like gesture recognition from video frames over time or speech-to-text conversion from sequential audio signals.
  8. Hierarchical Multimodal Models: These models process hierarchical structures in one modality along with another modality. For example, parsing a sentence structure along with corresponding audio signals for improved speech recognition.
  9. Multimodal Fusion Models: These models focus on the fusion strategies of different modalities. Early fusion combines all modalities at the beginning, late fusion combines at the end, while hybrid fusion uses a combination of both.
  10. Multimodal Attention Models: These models use attention mechanisms to weigh different modalities based on their relevance to the task at hand. This allows the model to focus more on important features from each modality.
  11. Multimodal Autoencoder Models: These models use autoencoders for tasks like multimodal data compression or noise reduction by learning a compact representation that captures information from all modalities.
  12. Multimodal Generative Models: These models are used for generating new samples by learning the joint distribution of different modalities, such as generating images from text descriptions or vice versa.
  13. Multimodal Reinforcement Learning Models: These models integrate multiple types of data in reinforcement learning settings where an agent learns to perform actions based on rewards and punishments.
  14. End-to-End Multimodal Models: These models process multiple types of data in an end-to-end manner without any separate processing stages for each modality, which can lead to better performance in some tasks.

Each type of multimodal model has its own strengths and weaknesses depending on the specific task and data available, so it's important to choose the right type based on your needs.

What Are the Advantages Provided by Multimodal Models?

Multimodal models are machine learning models that can process and analyze data from multiple sources or in various formats, such as text, images, audio, video, etc. These models have gained significant attention due to their ability to provide more comprehensive and accurate results compared to unimodal models. Here are some of the key advantages provided by multimodal models:

  1. Improved Accuracy: Multimodal models can leverage information from different types of data simultaneously. This allows them to capture a broader context and make more accurate predictions or decisions. For example, in sentiment analysis, a model might misinterpret the sentiment of a text message if it doesn't consider the accompanying emoji.
  2. Robustness: By using multiple modes of data, these models can still function effectively even when one mode is missing or unclear. For instance, if an image is blurry or low-quality, the model could still use textual descriptions or metadata associated with the image to understand its content.
  3. Comprehensive Understanding: Multimodal models can provide a more holistic understanding of complex scenarios where different types of data need to be considered together. For example, in autonomous driving systems, these models can combine visual data (from cameras), auditory data (from microphones), and sensor data (from radars and lidars) to understand the vehicle's surroundings better.
  4. Contextual Interpretation: These models are capable of interpreting the context better by correlating information from different modalities. This is particularly useful in fields like natural language processing where understanding the context is crucial for tasks like language translation or conversation understanding.
  5. Reduced Bias: Since multimodal models use diverse types of data for decision-making processes instead of relying on a single type of input source, they help reduce bias that might occur due to over-reliance on one particular type of input source.
  6. Enhanced User Experience: In applications involving human-computer interaction, multimodal models can provide a more natural and engaging user experience. For example, a virtual assistant using a multimodal model could understand user commands given through both speech and text, respond with synthesized speech or on-screen text, and even use visual cues like images or animations.
  7. Increased Flexibility: Multimodal models offer flexibility in terms of data input. They can handle different types of data inputs simultaneously which makes them adaptable to various scenarios and applications.
  8. Efficiency: By processing multiple types of data concurrently, these models can often deliver results more quickly than if each type of data were processed separately.

Multimodal models are powerful tools that offer numerous advantages over traditional unimodal models. Their ability to process and analyze multiple types of data simultaneously allows for improved accuracy, robustness, comprehensive understanding, contextual interpretation, reduced bias, enhanced user experience, increased flexibility and efficiency.

Who Uses Multimodal Models?

  • Researchers: These are individuals or groups who use multimodal models to conduct studies and experiments in various fields such as artificial intelligence, machine learning, data science, and more. They utilize these models to understand complex patterns, behaviors, or phenomena that involve multiple modes of information.
  • Data Scientists: Data scientists use multimodal models to analyze and interpret complex datasets. These models help them combine different types of data (textual, visual, auditory) for a more comprehensive analysis.
  • AI Developers: These users employ multimodal models to build sophisticated AI systems. The models allow the integration of different types of data inputs like text, images, audio, etc., which can enhance the performance and capabilities of their AI applications.
  • Healthcare Professionals: In the healthcare sector, professionals use multimodal models for diagnosis and treatment purposes. For instance, they might combine a patient's medical history with imaging data for better diagnostic accuracy.
  • Educators: Teachers and educators may use multimodal models in developing teaching materials that cater to different learning styles. For example, a lesson could be presented in text form accompanied by relevant images or videos.
  • Marketing Analysts: These professionals use multimodal models to gain insights into consumer behavior by analyzing various types of data such as social media posts (text), customer reviews (audio), and product images (visual).
  • Social Media Managers: They leverage multimodal models to analyze user-generated content on social platforms which often includes text posts along with images or videos. This helps them understand trends and user sentiments better.
  • eCommerce Companies: Such companies use these models for recommendation systems where they consider multiple factors like user browsing history (textual), product images (visual), customer reviews (audio/text), etc., to provide personalized recommendations.
  • Security Agencies: Multimodal models are used by security agencies for surveillance purposes where they need to analyze multiple types of data like video footage, audio recordings, etc., simultaneously.
  • Gaming Industry: Game developers use multimodal models to create more immersive and interactive gaming experiences. For instance, a game could respond to voice commands (audio), physical movements (visual), or typed instructions (text).
  • Autonomous Vehicle Developers: These users employ multimodal models in the development of self-driving cars. The models help in integrating and interpreting data from various sensors like cameras, radars, lidar, etc., for safe navigation.
  • Financial Analysts: They use multimodal models to analyze different types of financial data such as numerical data, text from news articles or reports, and visual data like charts or graphs for better decision making.
  • Content Creators: Bloggers, vloggers, podcasters, etc., can use these models to understand their audience's preferences by analyzing different types of content they interact with - be it text posts, videos or audio podcasts.

How Much Do Multimodal Models Cost?

The cost of multimodal models can vary greatly depending on a number of factors. These include the complexity of the model, the amount of data it needs to process, and the computational resources required to run it.

Firstly, the complexity of the model plays a significant role in determining its cost. Multimodal models are designed to process multiple types of data simultaneously, such as text, images, and audio. The more complex the model is - that is, the more types of data it can process and the more sophisticated its algorithms are - the more expensive it will be to develop and maintain.

Secondly, the volume of data that a multimodal model needs to handle can also significantly impact its cost. Large amounts of data require more storage space and processing power, both of which come at a price. Additionally, if a company needs to collect or purchase this data from external sources, this can further increase costs.

Thirdly, running multimodal models requires substantial computational resources. This includes not only hardware (like servers) but also software (like machine learning platforms) that can handle these complex tasks. Depending on whether these resources are purchased outright or rented (for example through cloud services), they could represent either a large upfront investment or an ongoing operational expense.

Furthermore, there are other costs associated with developing and maintaining multimodal models that should not be overlooked. For instance:

  • Personnel costs: You need skilled professionals like data scientists and machine learning engineers who have expertise in building and optimizing these kinds of models.
  • Training costs: Multimodal models often need to be trained on large datasets before they can deliver accurate results. This training process can take considerable time and computational power.
  • Maintenance costs: Like any piece of technology, multimodal models need regular maintenance to ensure they continue working effectively over time.
  • Infrastructure costs: If you're hosting your own servers for computation purposes or storing large volumes of data locally rather than using cloud services, you'll need to factor in the cost of this infrastructure.

While it's difficult to put a specific price tag on multimodal models due to these various factors, it's safe to say that they represent a significant investment. However, for many businesses and organizations, the benefits they offer - such as improved accuracy and efficiency in data processing tasks - make them well worth the cost.

What Do Multimodal Models Integrate With?

Multimodal models can integrate with a variety of software types. One such type is natural language processing (NLP) software, which helps the model understand and generate human language. This includes chatbots, voice assistants, and translation apps.

Another type is image recognition software, which allows the model to identify objects or features in images. This could be used in applications like security systems or medical imaging analysis.

Video processing software can also integrate with multimodal models. This might be used for tasks like video editing, surveillance footage analysis, or even creating deepfake videos.

Data analytics software is another type that can work with multimodal models. These tools help analyze large amounts of data from various sources and could be used to make predictions or discover patterns.

Machine learning platforms can integrate with multimodal models as well. These platforms provide the infrastructure needed to train and deploy these complex models. They often include features for managing data, building models, and monitoring their performance.

In addition to these specific types of software, any application that involves processing multiple types of data could potentially integrate with a multimodal model. The key is that the model needs to be able to handle different kinds of input - whether it's text, images, audio, video or some other form of data.

What Are the Trends Relating to Multimodal Models?

  • Rise of Multimodal Models: In recent years, there has been an increasing trend towards the development and deployment of multimodal models in machine learning, AI, and data analysis. These are models that can process and analyze different types of data - such as text, images, sound, and more - simultaneously.
  • Integration across Domains: This trend is primarily driven by the necessity to integrate information across various domains for better understanding and decision-making. For instance, in healthcare, a multimodal model might consider a patient's medical history (text), X-rays (images), and heart rate over time (time-series data) to make a comprehensive diagnosis.
  • Enhanced Performance: Multimodal models often outperform unimodal models (those that only work with one type of data). They can draw correlations between different types of data that would otherwise go unnoticed. For example, in a customer service scenario, a multimodal model could combine text-based chatbot interactions with auditory sentiment analysis from phone calls to understand customer satisfaction more holistically.
  • Improved User Experience: In the field of technology and user experience design, multimodal models are used to create interfaces that can interact with users through multiple means – like voice commands, touch input, gesture recognition, etc., thereby significantly enhancing user experience.
  • Natural Language Processing (NLP): The field of Natural Language Processing has seen a surge in the use of multimodal models. Combining textual data with audio or visual cues can greatly improve language understanding and generation capabilities of AI systems.
  • Use in Autonomous Vehicles: Multimodal models are being increasingly used in autonomous vehicles where they need to process a wide array of sensor data including camera feeds, LIDAR data, GPS signals, etc., for safe navigation.
  • Evolution of Deep Learning Techniques: With advances in deep learning techniques such as Convolutional Neural Networks (CNNs) for image processing and Recurrent Neural Networks (RNNs) for sequential data, multimodal models have become more effective and efficient.
  • Challenges & Future Research: Despite the promising trends, multimodal models do pose certain challenges such as data integration, model interpretability, and handling of incomplete or missing modalities. These areas are subject to ongoing research and development.
  • Emergence of Multimodal Transformers: Transformer-based architectures which were initially designed for NLP tasks are being extended towards multimodal tasks. These multimodal transformers are capable of handling multiple types of data inputs, paving new ways in AI research.
  • Increased Use in eCommerce: In ecommerce, multimodal models can enhance customer experience by providing product recommendations based on textual search history, browsing patterns, and image-based preferences.
  • Rise in Multimodal Datasets: The trend toward multimodal models is also reflected in the proliferation of multimodal datasets. These datasets contain different types of data - images, text, audio, etc., fostering the development of more sophisticated models.

How To Select the Best Multimodal Model

Selecting the right multimodal models involves several steps and considerations. Here's how you can go about it:

  1. Define Your Objectives: The first step in selecting a multimodal model is to clearly define your objectives. What are you trying to achieve with this model? Are you looking to improve customer service, enhance product recommendations, or predict future trends? Your objectives will guide your selection process.
  2. Understand the Data: Multimodal models work by integrating data from multiple sources or types (e.g., text, images, audio). Therefore, understanding the nature of your data is crucial. You need to know what kind of data you have access to and how it can be used in a multimodal model.
  3. Evaluate Model Performance: Look at the performance metrics of potential models. These could include accuracy, precision, recall, F1 score, etc., depending on your specific use case. Choose a model that performs well according to these metrics.
  4. Consider Computational Resources: Some multimodal models require significant computational resources for training and inference. Make sure that the chosen model aligns with your available resources such as processing power and memory capacity.
  5. Check Compatibility: Ensure that the selected model is compatible with your existing systems and workflows. It should be able to integrate seamlessly without causing disruptions.
  6. Review Documentation & Support: Good documentation and community support can make it easier for you to implement and troubleshoot the model.
  7. Experiment & Iterate: Don't be afraid to experiment with different models and iterate based on results. Machine learning is an iterative process where improvements are made over time based on feedback from real-world use cases.

Remember that there's no one-size-fits-all solution when it comes to choosing a multimodal model; what works best will depend on your specific needs and circumstances. On this page you will find available tools to compare multimodal models prices, features, integrations and more for you to choose the best software.