Best ML Model Deployment Tools for Microsoft Intelligent Data Platform

Compare the Top ML Model Deployment Tools that integrate with Microsoft Intelligent Data Platform as of October 2025

This a list of ML Model Deployment tools that integrate with Microsoft Intelligent Data Platform. Use the filters on the left to add additional filters for products that have integrations with Microsoft Intelligent Data Platform. View the products that work with Microsoft Intelligent Data Platform in the table below.

What are ML Model Deployment Tools for Microsoft Intelligent Data Platform?

Machine learning model deployment tools, also known as model serving tools, are platforms and software solutions that facilitate the process of deploying machine learning models into production environments for real-time or batch inference. These tools help automate the integration, scaling, and monitoring of models after they have been trained, enabling them to be used by applications, services, or products. They offer functionalities such as model versioning, API creation, containerization (e.g., Docker), and orchestration (e.g., Kubernetes), ensuring that the models can be deployed, maintained, and updated seamlessly. These tools also monitor model performance over time, helping teams detect model drift and maintain accuracy. Compare and read user reviews of the best ML Model Deployment tools for Microsoft Intelligent Data Platform currently available using the table below. This list is updated regularly.

  • 1
    Azure Machine Learning
    Accelerate the end-to-end machine learning lifecycle. Empower developers and data scientists with a wide range of productive experiences for building, training, and deploying machine learning models faster. Accelerate time to market and foster team collaboration with industry-leading MLOps—DevOps for machine learning. Innovate on a secure, trusted platform, designed for responsible ML. Productivity for all skill levels, with code-first and drag-and-drop designer, and automated machine learning. Robust MLOps capabilities that integrate with existing DevOps processes and help manage the complete ML lifecycle. Responsible ML capabilities – understand models with interpretability and fairness, protect data with differential privacy and confidential computing, and control the ML lifecycle with audit trials and datasheets. Best-in-class support for open-source frameworks and languages including MLflow, Kubeflow, ONNX, PyTorch, TensorFlow, Python, and R.
  • 2
    Azure AI Foundry
    Azure AI Foundry is a unified application platform for your entire organization in the age of AI. Azure AI Foundry helps bridge the gap between cutting-edge AI technologies and practical business applications, empowering organizations to harness the full potential of AI efficiently and effectively. Azure AI Foundry is designed to empower your entire organization—developers, AI engineers, and IT professionals—to customize, host, run, and manage AI solutions with greater ease and confidence. This unified approach simplifies the development and management process, helping all stakeholders focus on driving innovation and achieving strategic goals. Azure AI Foundry Agent Service is a powerful component designed to facilitate the seamless operation of AI agents throughout the entire lifecycle—from development and deployment to production.
  • Previous
  • You're on page 1
  • Next