Best ML Model Deployment Tools for Azure Functions

Compare the Top ML Model Deployment Tools that integrate with Azure Functions as of October 2025

This a list of ML Model Deployment tools that integrate with Azure Functions. Use the filters on the left to add additional filters for products that have integrations with Azure Functions. View the products that work with Azure Functions in the table below.

What are ML Model Deployment Tools for Azure Functions?

Machine learning model deployment tools, also known as model serving tools, are platforms and software solutions that facilitate the process of deploying machine learning models into production environments for real-time or batch inference. These tools help automate the integration, scaling, and monitoring of models after they have been trained, enabling them to be used by applications, services, or products. They offer functionalities such as model versioning, API creation, containerization (e.g., Docker), and orchestration (e.g., Kubernetes), ensuring that the models can be deployed, maintained, and updated seamlessly. These tools also monitor model performance over time, helping teams detect model drift and maintain accuracy. Compare and read user reviews of the best ML Model Deployment tools for Azure Functions currently available using the table below. This list is updated regularly.

  • 1
    BentoML

    BentoML

    BentoML

    Serve your ML model in any cloud in minutes. Unified model packaging format enabling both online and offline serving on any platform. 100x the throughput of your regular flask-based model server, thanks to our advanced micro-batching mechanism. Deliver high-quality prediction services that speak the DevOps language and integrate perfectly with common infrastructure tools. Unified format for deployment. High-performance model serving. DevOps best practices baked in. The service uses the BERT model trained with the TensorFlow framework to predict movie reviews' sentiment. DevOps-free BentoML workflow, from prediction service registry, deployment automation, to endpoint monitoring, all configured automatically for your team. A solid foundation for running serious ML workloads in production. Keep all your team's models, deployments, and changes highly visible and control access via SSO, RBAC, client authentication, and auditing logs.
    Starting Price: Free
  • Previous
  • You're on page 1
  • Next