Compare the Top On-Premises Machine Learning Software as of November 2025 - Page 2

  • 1
    Mobius Labs

    Mobius Labs

    Mobius Labs

    We make it easy to add superhuman computer vision to your applications, devices and processes to give you unassailable competitive advantage. No code, customizable & on-premise AI solutions.
  • 2
    Datatron

    Datatron

    Datatron

    Datatron offers tools and features built from scratch, specifically to make machine learning in production work for you. Most teams discover that there’s more to just deploying models, which is already a very manual and time-consuming task. Datatron offers single model governance and management platform for all of your ML, AI, and Data Science models in production. We help you automate, optimize, and accelerate your ML models to ensure that they are running smoothly and efficiently in production. Data Scientists use a variety of frameworks to build the best models. We support anything you’d build a model with ( e.g. TensorFlow, H2O, Scikit-Learn, and SAS ). Explore models built and uploaded by your data science team, all from one centralized repository. Create a scalable model deployment in just a few clicks. Deploy models built using any language or framework. Make better decisions based on your model performance.
  • 3
    Krista

    Krista

    Krista

    Krista is a nothing-like-code intelligent automation platform that orchestrates your people, apps, and AI so you can optimize business outcomes. Krista builds and integrates machine learning and apps more simply than you can imagine. Krista is purpose-built to automate business outcomes, not just back-office tasks. Optimizing outcomes requires spanning departments of people & apps, deploying AI/ML for autonomous decision-making, leveraging your existing task automation, and enabling constant change. By digitizing complete processes, Krista delivers organization-wide, bottom-line impact.Krista empowers your people to create and modify automations without programming. Democratizing automation increases business speed and keeps you from waiting in the dreaded IT backlog. Krista dramatically reduces TCO compared to your current automation platform.
  • 4
    MLReef

    MLReef

    MLReef

    MLReef enables domain experts and data scientists to securely collaborate via a hybrid of pro-code & no-code development approaches. 75% increase in productivity due to distributed workloads. This enables teams to complete more ML projects faster. Domain experts and data scientists collaborate on the same platform reducing 100% of unnecessary communication ping-pong. MLReef works on your premises and uniquely enables 100% reproducibility and continuity. Rebuild all work at any time. You can use already well-known and established git repositories to create explorable, interoperable, and versioned AI modules. AI Modules created by your data scientists become drag-and-drop elements. These are adjustable by parameters, versioned, interoperable, and explorable within your entire organization. Data handling often requires expert knowledge that a single data scientist often lacks. MLReef enables your field experts to relieve your data processing task, reducing complexities.
  • 5
    Pathway

    Pathway

    Pathway

    Pathway is a Python ETL framework for stream processing, real-time analytics, LLM pipelines, and RAG. Pathway comes with an easy-to-use Python API, allowing you to seamlessly integrate your favorite Python ML libraries. Pathway code is versatile and robust: you can use it in both development and production environments, handling both batch and streaming data effectively. The same code can be used for local development, CI/CD tests, running batch jobs, handling stream replays, and processing data streams. Pathway is powered by a scalable Rust engine based on Differential Dataflow and performs incremental computation. Your Pathway code, despite being written in Python, is run by the Rust engine, enabling multithreading, multiprocessing, and distributed computations. All the pipeline is kept in memory and can be easily deployed with Docker and Kubernetes.
  • 6
    Almeta ML

    Almeta ML

    Almeta Cloud

    Almeta ML is the easiest way to run machine learning calculations on your website. Calculate propensity to purchase or churn, product recommendations, best time to contact and other metrics for your users. Run a promotion, retarget with ads, make a customized offer, send a campaign. Use with Google Ads, Facebook Ads, Bing Ads or any other advertising network. Get insights into user behavior to enable ML-driven scoring, targeting and personalization. Run pre-built or custom models. Use ML insights, scores and metrics to maximize ROAS and minimize churn. Almeta ML offers usage-based pricing with a free tier. You pay only for what you use, depending on how many events you want to track and how many model calculations you want to run.
    Starting Price: $0
  • 7
    Huawei Cloud ModelArts
    ​ModelArts is a comprehensive AI development platform provided by Huawei Cloud, designed to streamline the entire AI workflow for developers and data scientists. It offers a full-lifecycle toolchain that includes data preprocessing, semi-automated data labeling, distributed training, automated model building, and flexible deployment options across cloud, edge, and on-premises environments. It supports popular open source AI frameworks such as TensorFlow, PyTorch, and MindSpore, and allows for the integration of custom algorithms tailored to specific needs. ModelArts features an end-to-end development pipeline that enhances collaboration across DataOps, MLOps, and DevOps, boosting development efficiency by up to 50%. It provides cost-effective AI computing resources with diverse specifications, enabling large-scale distributed training and inference acceleration.
  • 8
    Sixgill Sense
    Every step of the machine learning and computer vision workflow is made simple and fast within one no-code platform. Sense allows anyone to build and deploy AI IoT solutions to any cloud, the edge or on-premise. Learn how Sense provides simplicity, consistency and transparency to AI/ML teams with enough power and depth for ML engineers yet easy enough to use for subject matter experts. Sense Data Annotation optimizes the success of your machine learning models with the fastest, easiest way to label video and image data for high-quality training dataset creation. The Sense platform offers one-touch labeling integration for continuous machine learning at the edge for simplified management of all your AI solutions.
  • 9
    Fosfor Decision Cloud
    Everything you need to make better business decisions. The Fosfor Decision Cloud unifies the modern data ecosystem to deliver the long-sought promise of AI: enhanced business outcomes. The Fosfor Decision Cloud unifies the components of your data stack into a modern decision stack, built to amplify business outcomes. Fosfor works seamlessly with its partners to create the modern decision stack, which delivers unprecedented value from your data investments.
  • 10
    HPE Ezmeral ML OPS

    HPE Ezmeral ML OPS

    Hewlett Packard Enterprise

    HPE Ezmeral ML Ops provides pre-packaged tools to operationalize machine learning workflows at every stage of the ML lifecycle, from pilot to production, giving you DevOps-like speed and agility. Quickly spin-up environments with your preferred data science tools to explore a variety of enterprise data sources and simultaneously experiment with multiple machine learning or deep learning frameworks to pick the best fit model for the business problems you need to address. Self-service, on-demand environments for development and test or production workloads. Highly performant training environments—with separation of compute and storage—that securely access shared enterprise data sources in on-premises or cloud-based storage. HPE Ezmeral ML Ops enables source control with out of the box integration tools such as GitHub. Store multiple models (multiple versions with metadata) for various runtime engines in the model registry.
  • 11
    Polyaxon

    Polyaxon

    Polyaxon

    A Platform for reproducible and scalable Machine Learning and Deep Learning applications. Learn more about the suite of features and products that underpin today's most innovative platform for managing data science workflows. Polyaxon provides an interactive workspace with notebooks, tensorboards, visualizations,and dashboards. Collaborate with the rest of your team, share and compare experiments and results. Reproducible results with a built-in version control for code and experiments. Deploy Polyaxon in the cloud, on-premises or in hybrid environments, including single laptop, container management platforms, or on Kubernetes. Spin up or down, add more nodes, add more GPUs, and expand storage.
  • 12
    navio

    navio

    craftworks GmbH

    Seamless machine learning model management, deployment, and monitoring for supercharging MLOps for any organization on the best AI platform. Use navio to perform various machine learning operations across an organization's entire artificial intelligence landscape. Take your experiments out of the lab and into production, and integrate machine learning into your workflow for a real, measurable business impact. navio provides various Machine Learning operations (MLOps) to support you during the model development process all the way to running your model in production. Automatically create REST endpoints and keep track of the machines or clients that are interacting with your model. Focus on exploration and training your models to obtain the best possible result and stop wasting time and resources on setting up infrastructure and other peripheral features. Let navio handle all aspects of the product ionization process to go live quickly with your machine learning models.
  • 13
    SparkAI

    SparkAI

    SparkAI

    SparkAI combines people and technology to resolve AI edge cases, false positives, and other exceptions encountered live in production, so you can launch & scale automation products faster than ever.
  • 14
    Ensemble Dark Matter
    Train accurate ML models on limited, sparse, and high-dimensional data without extensive feature engineering by creating statistically optimized representations of your data. By learning how to extract and represent complex relationships in your existing data, Dark Matter improves model performance and speeds up training without extensive feature engineering or resource-intensive deep learning, enabling data scientists to spend less time on data and more time-solving hard problems. Dark Matter significantly improved model precision and f1 scores in predicting customer conversion in the online retail space. Model performance metrics improved across the board when trained on an optimized embedding learned from a sparse, high-dimensional data set. Training XGBoost on a better representation of the data improved predictions of customer churn in the banking industry. Enhance your pipeline, no matter your model or domain.
  • 15
    Simplismart

    Simplismart

    Simplismart

    Fine-tune and deploy AI models with Simplismart's fastest inference engine. Integrate with AWS/Azure/GCP and many more cloud providers for simple, scalable, cost-effective deployment. Import open source models from popular online repositories or deploy your own custom model. Leverage your own cloud resources or let Simplismart host your model. With Simplismart, you can go far beyond AI model deployment. You can train, deploy, and observe any ML model and realize increased inference speeds at lower costs. Import any dataset and fine-tune open-source or custom models rapidly. Run multiple training experiments in parallel efficiently to speed up your workflow. Deploy any model on our endpoints or your own VPC/premise and see greater performance at lower costs. Streamlined and intuitive deployment is now a reality. Monitor GPU utilization and all your node clusters in one dashboard. Detect any resource constraints and model inefficiencies on the go.
  • 16
    AI Verse

    AI Verse

    AI Verse

    When real-life data capture is challenging, we generate diverse, fully labeled image datasets. Our procedural technology ensures the highest quality, unbiased, labeled synthetic datasets that will improve your computer vision model’s accuracy. AI Verse empowers users with full control over scene parameters, ensuring you can fine-tune the environments for unlimited image generation, giving you an edge in the competitive landscape of computer vision development.
  • 17
    AWS Elastic Fabric Adapter (EFA)
    Elastic Fabric Adapter (EFA) is a network interface for Amazon EC2 instances that enables customers to run applications requiring high levels of inter-node communications at scale on AWS. Its custom-built operating system (OS) bypass hardware interface enhances the performance of inter-instance communications, which is critical to scaling these applications. With EFA, High-Performance Computing (HPC) applications using the Message Passing Interface (MPI) and Machine Learning (ML) applications using NVIDIA Collective Communications Library (NCCL) can scale to thousands of CPUs or GPUs. As a result, you get the application performance of on-premises HPC clusters with the on-demand elasticity and flexibility of the AWS cloud. EFA is available as an optional EC2 networking feature that you can enable on any supported EC2 instance at no additional cost. Plus, it works with the most commonly used interfaces, APIs, and libraries for inter-node communications.
  • 18
    AutoKeras

    AutoKeras

    AutoKeras

    An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras is to make machine learning accessible to everyone. AutoKeras supports several tasks with an extremely simple interface.
  • 19
    Cloudera

    Cloudera

    Cloudera

    Manage and secure the data lifecycle from the Edge to AI in any cloud or data center. Operates across all major public clouds and the private cloud with a public cloud experience everywhere. Integrates data management and analytic experiences across the data lifecycle for data anywhere. Delivers security, compliance, migration, and metadata management across all environments. Open source, open integrations, extensible, & open to multiple data stores and compute architectures. Deliver easier, faster, and safer self-service analytics experiences. Provide self-service access to integrated, multi-function analytics on centrally managed and secured business data while deploying a consistent experience anywhere—on premises or in hybrid and multi-cloud. Enjoy consistent data security, governance, lineage, and control, while deploying the powerful, easy-to-use cloud analytics experiences business users require and eliminating their need for shadow IT solutions.
  • 20
    Robin.io

    Robin.io

    Robin.io

    ROBIN is the industry’s first hyper-converged Kubernetes platform for big data, databases, and AI/ML. The platform provides a self-service App-store experience for the deployment of any application, anywhere – runs on-premises in your private data center or in public-cloud (AWS, Azure, GCP) environments. Hyper-converged Kubernetes is a software-defined application orchestration framework that combines containerized storage, networking, compute (Kubernetes), and the application management layer into a single system. Our approach extends Kubernetes for data-intensive applications such as Hortonworks, Cloudera, Elastic stack, RDBMS, NoSQL databases, and AI/ML apps. Facilitates simpler and faster roll-out of critical Enterprise IT and LoB initiatives, such as containerization, cloud-migration, cost-consolidation, and productivity improvement. Solves the fundamental challenges of running big data and databases in Kubernetes.
  • 21
    Almato

    Almato

    Almato AG

    Simply smarter with Almato’s out-of-the-box highly secure AI services. We adapt to your operating model, whether on-premises, private cloud or public cloud. These form the basis for innovative extensions of business applications, upskilling of bots or analytics applications. Digitize with artificial intelligence from Almato: Machine Learning for Cognitive Automation, intelligent apps and more. The Almato intelligent catalog scanner is specially designed for companies in the international retail industry and can be easily and quickly integrated into any app. The goal is to use the intelligent scanner to link the analog and digital worlds and to make the analog shopping experience even more efficient for customers with digital components and intuitive usability. Significant expense reduction and improved customer experience through the use of diverse but customized AI and ML solutions.
  • 22
    BytePlus Recommend
    Product recommendations tailored to your customers' preferences in a fully-managed service. BytePlus Recommend draws from our expertise in machine learning to offer dynamic and targeted recommendations. Our industry-leading team has a track record of delivering recommendations for some of the world’s most popular platforms. You can learn from the data of your users to engage them better, and provide personalized suggestions based on granular customer behavior. BytePlus Recommend is easy to use — leveraging your existing infrastructure as well as automating the machine learning workflow. BytePlus Recommend leverages our research in machine learning to deliver personalized recommendations tailored to your audience’s preferences. Our experienced and talented algorithm team provides customized strategies that adapt to evolving business needs and goals. Our pricing is based on results from A/B testing. Optimization goals are determined based on business demands.
  • 23
    Digital Twin Studio
    Data Driven Digital Twin toolset to help you Visualize, Monitor, and Optimize your operation in Real-Time using machine learning and AI. Control your Cost of SKU, Resources, Automation, Equipment and more. Real-Time Visibility and Traceability - Digital Twin Shadow Technology. Digital Twin Studio® Open Architecture enables it to interact with a multitude of RTLS and data systems – RFID, BarCode, GPS, PLC, WMS, EMR, ERP, MRP, or RTLS systems Digital Twin with AI and Machine Learning - Predictive Analytics and Dynamic Scheduling Real-time predictive analytics deliver insights via notifications when issues are identified before they occur with state of the art Digital Twin Technology Digital Twin Replay - View Past Events and Setup Active Alerts. Digital Twin Studio can replay and animate all past events through 2D, 3D and VR. Digital Twin Live Real-Time Metrics - Dynamic Dashboards - Simple drag and drop dashboard builder with unlimited layout capabilities.
  • 24
    Profet AI

    Profet AI

    Profet AI

    Profet AI’s end-to-end No-Code AutoML Platform is manufacturers’ Virtual Data Scientist. It empowers industry domain/IT experts to rapidly build high-quality prediction models and deploy Industrial AI applications to solve their everyday production and digitalization challenges. Profet AI AutoML Platform is widely adopted by world's leading customers across industries, including the world's leading EMS, Semi-OSAT, PCB, IC design House, display panel and materials solution providers. We leverage industry leading companies' successful cases to benefit our customers to implement AI within one week.