Best Machine Learning Software for Visual Studio Code

Compare the Top Machine Learning Software that integrates with Visual Studio Code as of June 2025

This a list of Machine Learning software that integrates with Visual Studio Code. Use the filters on the left to add additional filters for products that have integrations with Visual Studio Code. View the products that work with Visual Studio Code in the table below.

What is Machine Learning Software for Visual Studio Code?

Machine learning software enables developers and data scientists to build, train, and deploy models that can learn from data and make predictions or decisions without being explicitly programmed. These tools provide frameworks and algorithms for tasks such as classification, regression, clustering, and natural language processing. They often come with features like data preprocessing, model evaluation, and hyperparameter tuning, which help optimize the performance of machine learning models. With the ability to analyze large datasets and uncover patterns, machine learning software is widely used in industries like healthcare, finance, marketing, and autonomous systems. Overall, this software empowers organizations to leverage data for smarter decision-making and automation. Compare and read user reviews of the best Machine Learning software for Visual Studio Code currently available using the table below. This list is updated regularly.

  • 1
    Deepnote

    Deepnote

    Deepnote

    Deepnote is building the best data science notebook for teams. In the notebook, users can connect their data, explore, and analyze it with real-time collaboration and version control. Users can easily share project links with team collaborators, or with end-users to present polished assets. All of this is done through a powerful, browser-based UI that runs in the cloud. We built Deepnote because data scientists don't work alone. Features: - Sharing notebooks and projects via URL - Inviting others to view, comment and collaborate, with version control - Publishing notebooks with visualizations for presentations - Sharing datasets between projects - Set team permissions to decide who can edit vs view code - Full linux terminal access - Code completion - Automatic python package management - Importing from github - PostgreSQL DB connection
    Starting Price: Free
  • 2
    VESSL AI

    VESSL AI

    VESSL AI

    Build, train, and deploy models faster at scale with fully managed infrastructure, tools, and workflows. Deploy custom AI & LLMs on any infrastructure in seconds and scale inference with ease. Handle your most demanding tasks with batch job scheduling, only paying with per-second billing. Optimize costs with GPU usage, spot instances, and built-in automatic failover. Train with a single command with YAML, simplifying complex infrastructure setups. Automatically scale up workers during high traffic and scale down to zero during inactivity. Deploy cutting-edge models with persistent endpoints in a serverless environment, optimizing resource usage. Monitor system and inference metrics in real-time, including worker count, GPU utilization, latency, and throughput. Efficiently conduct A/B testing by splitting traffic among multiple models for evaluation.
    Starting Price: $100 + compute/month
  • 3
    Databricks Data Intelligence Platform
    The Databricks Data Intelligence Platform allows your entire organization to use data and AI. It’s built on a lakehouse to provide an open, unified foundation for all data and governance, and is powered by a Data Intelligence Engine that understands the uniqueness of your data. The winners in every industry will be data and AI companies. From ETL to data warehousing to generative AI, Databricks helps you simplify and accelerate your data and AI goals. Databricks combines generative AI with the unification benefits of a lakehouse to power a Data Intelligence Engine that understands the unique semantics of your data. This allows the Databricks Platform to automatically optimize performance and manage infrastructure in ways unique to your business. The Data Intelligence Engine understands your organization’s language, so search and discovery of new data is as easy as asking a question like you would to a coworker.
  • 4
    CognitiveScale Cortex AI
    Developing AI solutions requires an engineering approach that is resilient, open and repeatable to ensure necessary quality and agility is achieved. Until today these efforts are missing the foundation to address these challenges amid a sea of point tools and fast changing models and data. Collaborative developer platform for automating development and control of AI applications across multiple personas. Derive hyper-detailed customer profiles from enterprise data to predict behaviors in real-time and at scale. Generate AI-powered models designed to continuously learn and achieve clearly defined business outcomes. Enables organizations to explain and prove compliance with applicable rules and regulations. CognitiveScale's Cortex AI Platform addresses enterprise AI use cases through modular platform offerings. Our customers consume and leverage its capabilities as microservices within their enterprise AI initiatives.
  • Previous
  • You're on page 1
  • Next