Compare the Top Machine Learning Software that integrates with Snowflake as of October 2025 - Page 2

This a list of Machine Learning software that integrates with Snowflake. Use the filters on the left to add additional filters for products that have integrations with Snowflake. View the products that work with Snowflake in the table below.

  • 1
    BryteFlow

    BryteFlow

    BryteFlow

    BryteFlow builds the most efficient automated environments for analytics ever. It converts Amazon S3 into an awesome analytics platform by leveraging the AWS ecosystem intelligently to deliver data at lightning speeds. It complements AWS Lake Formation and automates the Modern Data Architecture providing performance and productivity. You can completely automate data ingestion with BryteFlow Ingest’s simple point-and-click interface while BryteFlow XL Ingest is great for the initial full ingest for very large datasets. No coding is needed! With BryteFlow Blend you can merge data from varied sources like Oracle, SQL Server, Salesforce and SAP etc. and transform it to make it ready for Analytics and Machine Learning. BryteFlow TruData reconciles the data at the destination with the source continually or at a frequency you select. If data is missing or incomplete you get an alert so you can fix the issue easily.
  • 2
    Kraken

    Kraken

    Big Squid

    Kraken is for everyone from analysts to data scientists. Built to be the easiest-to-use, no-code automated machine learning platform. The Kraken no-code automated machine learning (AutoML) platform simplifies and automates data science tasks like data prep, data cleaning, algorithm selection, model training, and model deployment. Kraken was built with analysts and engineers in mind. If you've done data analysis before, you're ready! Kraken's no-code, easy-to-use interface and integrated SONAR© training make it easy to become a citizen data scientist. Advanced features allow data scientists to work faster and more efficiently. Whether you use Excel or flat files for day-to-day reporting or just ad-hoc analysis and exports, drag-and-drop CSV upload and the Amazon S3 connector in Kraken make it easy to start building models with a few clicks. Data Connectors in Kraken allow you to connect to your favorite data warehouse, business intelligence tools, and cloud storage.
    Starting Price: $100 per month
  • 3
    Privacera

    Privacera

    Privacera

    At the intersection of data governance, privacy, and security, Privacera’s unified data access governance platform maximizes the value of data by providing secure data access control and governance across hybrid- and multi-cloud environments. The hybrid platform centralizes access and natively enforces policies across multiple cloud services—AWS, Azure, Google Cloud, Databricks, Snowflake, Starburst and more—to democratize trusted data enterprise-wide without compromising compliance with regulations such as GDPR, CCPA, LGPD, or HIPAA. Trusted by Fortune 500 customers across finance, insurance, retail, healthcare, media, public and the federal sector, Privacera is the industry’s leading data access governance platform that delivers unmatched scalability, elasticity, and performance. Headquartered in Fremont, California, Privacera was founded in 2016 to manage cloud data privacy and security by the creators of Apache Ranger™ and Apache Atlas™.
  • 4
    Wallaroo.AI

    Wallaroo.AI

    Wallaroo.AI

    Wallaroo facilitates the last-mile of your machine learning journey, getting ML into your production environment to impact the bottom line, with incredible speed and efficiency. Wallaroo is purpose-built from the ground up to be the easy way to deploy and manage ML in production, unlike Apache Spark, or heavy-weight containers. ML with up to 80% lower cost and easily scale to more data, more models, more complex models. Wallaroo is designed to enable data scientists to quickly and easily deploy their ML models against live data, whether to testing environments, staging, or prod. Wallaroo supports the largest set of machine learning training frameworks possible. You’re free to focus on developing and iterating on your models while letting the platform take care of deployment and inference at speed and scale.
  • 5
    Fosfor Decision Cloud
    Everything you need to make better business decisions. The Fosfor Decision Cloud unifies the modern data ecosystem to deliver the long-sought promise of AI: enhanced business outcomes. The Fosfor Decision Cloud unifies the components of your data stack into a modern decision stack, built to amplify business outcomes. Fosfor works seamlessly with its partners to create the modern decision stack, which delivers unprecedented value from your data investments.
  • 6
    Feast

    Feast

    Tecton

    Make your offline data available for real-time predictions without having to build custom pipelines. Ensure data consistency between offline training and online inference, eliminating train-serve skew. Standardize data engineering workflows under one consistent framework. Teams use Feast as the foundation of their internal ML platforms. Feast doesn’t require the deployment and management of dedicated infrastructure. Instead, it reuses existing infrastructure and spins up new resources when needed. You are not looking for a managed solution and are willing to manage and maintain your own implementation. You have engineers that are able to support the implementation and management of Feast. You want to run pipelines that transform raw data into features in a separate system and integrate with it. You have unique requirements and want to build on top of an open source solution.
  • 7
    Zepl

    Zepl

    Zepl

    Sync, search and manage all the work across your data science team. Zepl’s powerful search lets you discover and reuse models and code. Use Zepl’s enterprise collaboration platform to query data from Snowflake, Athena or Redshift and build your models in Python. Use pivoting and dynamic forms for enhanced interactions with your data using heatmap, radar, and Sankey charts. Zepl creates a new container every time you run your notebook, providing you with the same image each time you run your models. Invite team members to join a shared space and work together in real time or simply leave their comments on a notebook. Use fine-grained access controls to share your work. Allow others have read, edit, and run access as well as enable collaboration and distribution. All notebooks are auto-saved and versioned. You can name, manage and roll back all versions through an easy-to-use interface, and export seamlessly into Github.
  • 8
    Amazon SageMaker Feature Store
    Amazon SageMaker Feature Store is a fully managed, purpose-built repository to store, share, and manage features for machine learning (ML) models. Features are inputs to ML models used during training and inference. For example, in an application that recommends a music playlist, features could include song ratings, listening duration, and listener demographics. Features are used repeatedly by multiple teams and feature quality is critical to ensure a highly accurate model. Also, when features used to train models offline in batch are made available for real-time inference, it’s hard to keep the two feature stores synchronized. SageMaker Feature Store provides a secured and unified store for feature use across the ML lifecycle. Store, share, and manage ML model features for training and inference to promote feature reuse across ML applications. Ingest features from any data source including streaming and batch such as application logs, service logs, clickstreams, sensors, etc.
  • 9
    Amazon SageMaker Data Wrangler
    Amazon SageMaker Data Wrangler reduces the time it takes to aggregate and prepare data for machine learning (ML) from weeks to minutes. With SageMaker Data Wrangler, you can simplify the process of data preparation and feature engineering, and complete each step of the data preparation workflow (including data selection, cleansing, exploration, visualization, and processing at scale) from a single visual interface. You can use SQL to select the data you want from a wide variety of data sources and import it quickly. Next, you can use the Data Quality and Insights report to automatically verify data quality and detect anomalies, such as duplicate rows and target leakage. SageMaker Data Wrangler contains over 300 built-in data transformations so you can quickly transform data without writing any code. Once you have completed your data preparation workflow, you can scale it to your full datasets using SageMaker data processing jobs; train, tune, and deploy models.
  • 10
    Robust Intelligence

    Robust Intelligence

    Robust Intelligence

    The Robust Intelligence Platform integrates seamlessly into your ML lifecycle to eliminate model failures. The platform detects your model’s vulnerabilities, prevents aberrant data from entering your AI system, and detects statistical data issues like drift. At the core of our test-based approach is a single test. Each test measures your model’s robustness to a specific type of production model failure. Stress Testing runs hundreds of these tests to measure model production readiness. The results of these tests are used to auto-configure a custom AI Firewall that protects the model against the specific forms of failure to which a given model is susceptible. Finally, Continuous Testing runs these tests during production, providing automated root cause analysis informed by the underlying cause of any single test failure. Using all three elements of the Robust Intelligence platform together helps ensure ML Integrity.
  • 11
    Layerup

    Layerup

    Layerup

    Extract and Transform any data from any data source with Natural Language connect to your data source - everything ranging from your DB to your CRM to your billing solution. Improve Productivity by 5-10x Forget about wasting time on clunky BI tools. Use Natural Language to query any complex data in seconds. Transition from DIY tools to non-DIY AI-powered tools. Generate complex dashboards and reports in a few lines. No more SQL or complex formulas - let Layerup AI do the heavy lifting for you. Layerup not only gives you instant answer to questions that would require 5-40 hours/month on SQL queries, but it will act as your personal data analyst 24/7 while providing you complex dashboards/charts that you can embed anywhere.
  • 12
    Modelbit

    Modelbit

    Modelbit

    Don't change your day-to-day, works with Jupyter Notebooks and any other Python environment. Simply call modelbi.deploy to deploy your model, and let Modelbit carry it — and all its dependencies — to production. ML models deployed with Modelbit can be called directly from your warehouse as easily as calling a SQL function. They can also be called as a REST endpoint directly from your product. Modelbit is backed by your git repo. GitHub, GitLab, or home grown. Code review. CI/CD pipelines. PRs and merge requests. Bring your whole git workflow to your Python ML models. Modelbit integrates seamlessly with Hex, DeepNote, Noteable and more. Take your model straight from your favorite cloud notebook into production. Sick of VPC configurations and IAM roles? Seamlessly redeploy your SageMaker models to Modelbit. Immediately reap the benefits of Modelbit's platform with the models you've already built.
  • 13
    Azure AI Foundry
    Azure AI Foundry is a unified application platform for your entire organization in the age of AI. Azure AI Foundry helps bridge the gap between cutting-edge AI technologies and practical business applications, empowering organizations to harness the full potential of AI efficiently and effectively. Azure AI Foundry is designed to empower your entire organization—developers, AI engineers, and IT professionals—to customize, host, run, and manage AI solutions with greater ease and confidence. This unified approach simplifies the development and management process, helping all stakeholders focus on driving innovation and achieving strategic goals. Azure AI Foundry Agent Service is a powerful component designed to facilitate the seamless operation of AI agents throughout the entire lifecycle—from development and deployment to production.
  • 14
    CognitiveScale Cortex AI
    Developing AI solutions requires an engineering approach that is resilient, open and repeatable to ensure necessary quality and agility is achieved. Until today these efforts are missing the foundation to address these challenges amid a sea of point tools and fast changing models and data. Collaborative developer platform for automating development and control of AI applications across multiple personas. Derive hyper-detailed customer profiles from enterprise data to predict behaviors in real-time and at scale. Generate AI-powered models designed to continuously learn and achieve clearly defined business outcomes. Enables organizations to explain and prove compliance with applicable rules and regulations. CognitiveScale's Cortex AI Platform addresses enterprise AI use cases through modular platform offerings. Our customers consume and leverage its capabilities as microservices within their enterprise AI initiatives.
  • 15
    Vidora Cortex
    Attempting to build Machine Learning Pipelines internally often takes longer and costs more than planned. And worse, Gartner shows that more than 80% of AI Projects will fail. With Cortex, we help teams get up and running with machine learning faster and cheaper than alternatives, all while putting data to use to improve business outcomes. Empower every team with the ability to create their own AI Predictions. No longer will you need to wait to hire a team and build out costly infrastructure. With Cortex you can create predictions from the data you already have, all through an easy to use web interface. Now everyone is a Data Scientist! Cortex automates the process of turning raw data into Machine Learning Pipelines, eliminating the hardest and most time consuming aspects of AI. These predictions stay accurate and up to date by continuously ingesting new data and updating the underlying model automatically – no human intervention needed.