Compare the Top Machine Learning Software that integrates with Python as of July 2025 - Page 2

This a list of Machine Learning software that integrates with Python. Use the filters on the left to add additional filters for products that have integrations with Python. View the products that work with Python in the table below.

  • 1
    UnionML

    UnionML

    Union

    Creating ML apps should be simple and frictionless. UnionML is an open-source Python framework built on top of Flyte™, unifying the complex ecosystem of ML tools into a single interface. Combine the tools that you love using a simple, standardized API so you can stop writing so much boilerplate and focus on what matters: the data and the models that learn from them. Fit the rich ecosystem of tools and frameworks into a common protocol for machine learning. Using industry-standard machine learning methods, implement endpoints for fetching data, training models, serving predictions (and much more) to write a complete ML stack in one place. ‍ Data science, ML engineering, and MLOps practitioners can all gather around UnionML apps as a way of defining a single source of truth about your ML system’s behavior.
  • 2
    Vaex

    Vaex

    Vaex

    At Vaex.io we aim to democratize big data and make it available to anyone, on any machine, at any scale. Cut development time by 80%, your prototype is your solution. Create automatic pipelines for any model. Empower your data scientists. Turn any laptop into a big data powerhouse, no clusters, no engineers. We provide reliable and fast data driven solutions. With our state-of-the-art technology we build and deploy machine learning models faster than anyone on the market. Turn your data scientist into big data engineers. We provide comprehensive training of your employees, enabling you to take full advantage of our technology. Combines memory mapping, a sophisticated expression system, and fast out-of-core algorithms. Efficiently visualize and explore big datasets, and build machine learning models on a single machine.
  • 3
    Kolena

    Kolena

    Kolena

    We’ve included some common examples, but the list is far from exhaustive. Our solution engineering team will work with you to customize Kolena for your workflows and your business metrics. Aggregate metrics don't tell the full story — unexpected model behavior in production is the norm. Current testing processes are manual, error-prone, and unrepeatable. Models are evaluated on arbitrary statistical metrics that align imperfectly with product objectives. ‍ Tracking model improvement over time as the data evolves is difficult and techniques sufficient in a research environment don't meet the demands of production.
  • 4
    WhyLabs

    WhyLabs

    WhyLabs

    Enable observability to detect data and ML issues faster, deliver continuous improvements, and avoid costly incidents. Start with reliable data. Continuously monitor any data-in-motion for data quality issues. Pinpoint data and model drift. Identify training-serving skew and proactively retrain. Detect model accuracy degradation by continuously monitoring key performance metrics. Identify risky behavior in generative AI applications and prevent data leakage. Protect your generative AI applications are safe from malicious actions. Improve AI applications through user feedback, monitoring, and cross-team collaboration. Integrate in minutes with purpose-built agents that analyze raw data without moving or duplicating it, ensuring privacy and security. Onboard the WhyLabs SaaS Platform for any use cases using the proprietary privacy-preserving integration. Security approved for healthcare and banks.
  • 5
    Zama

    Zama

    Zama

    Improve patient care while maintaining privacy by allowing secure, confidential data sharing between healthcare providers. Facilitate secure financial data analysis for risk management and fraud detection, keeping client information encrypted and safe. Create targeted advertising and campaign insights in a post-cookie era, ensuring user privacy through encrypted data analysis. Enable data collaboration between different agencies, while keeping it confidential from each other, enhancing efficiency and data security, without revealing secrets. Give the ability to create user authentication applications without having to reveal their identities. Enable governments to create digitized versions of their services without having to trust cloud providers.
  • 6
    3LC

    3LC

    3LC

    Light up the black box and pip install 3LC to gain the clarity you need to make meaningful changes to your models in moments. Remove the guesswork from your model training and iterate fast. Collect per-sample metrics and visualize them in your browser. Analyze your training and eliminate issues in your dataset. Model-guided, interactive data debugging and enhancements. Find important or inefficient samples. Understand what samples work and where your model struggles. Improve your model in different ways by weighting your data. Make sparse, non-destructive edits to individual samples or in a batch. Maintain a lineage of all changes and restore any previous revisions. Dive deeper than standard experiment trackers with per-sample per epoch metrics and data tracking. Aggregate metrics by sample features, rather than just epoch, to spot hidden trends. Tie each training run to a specific dataset revision for full reproducibility.
  • 7
    Invert

    Invert

    Invert

    Invert offers a complete suite for collecting, cleaning, and contextualizing data, ensuring every analysis and insight is based on reliable, organized data. Invert collects and standardizes all your bioprocess data, with powerful, built-in products for analysis, machine learning, and modeling. Clean, standardized data is just the beginning. Explore our suite of data management, analysis, and modeling tools. Replace manual workflows in spreadsheets or statistical software. Calculate anything using powerful statistical features. Automatically generate reports based on recent runs. Add interactive plots, calculations, and comments and share with internal or external collaborators. Streamline planning, coordination, and execution of experiments. Easily find the data you need, and deep dive into any analysis you'd like. From integration to analysis to modeling, find all the tools you need to manage and make sense of your data.
  • 8
    MLBox

    MLBox

    Axel ARONIO DE ROMBLAY

    MLBox is a powerful Automated Machine Learning python library. It provides the following features fast reading and distributed data preprocessing/cleaning/formatting, highly robust feature selection and leak detection, accurate hyper-parameter optimization in high-dimensional space, state-of-the art predictive models for classification and regression (Deep Learning, Stacking, LightGBM), and prediction with models interpretation. MLBox main package contains 3 sub-packages: preprocessing, optimization and prediction. Each one of them are respectively aimed at reading and preprocessing data, testing or optimizing a wide range of learners and predicting the target on a test dataset.
  • 9
    Ludwig

    Ludwig

    Uber AI

    Ludwig is a low-code framework for building custom AI models like LLMs and other deep neural networks. Build custom models with ease: a declarative YAML configuration file is all you need to train a state-of-the-art LLM on your data. Support for multi-task and multi-modality learning. Comprehensive config validation detects invalid parameter combinations and prevents runtime failures. Optimized for scale and efficiency: automatic batch size selection, distributed training (DDP, DeepSpeed), parameter efficient fine-tuning (PEFT), 4-bit quantization (QLoRA), and larger-than-memory datasets. Expert level control: retain full control of your models down to the activation functions. Support for hyperparameter optimization, explainability, and rich metric visualizations. Modular and extensible: experiment with different model architectures, tasks, features, and modalities with just a few parameter changes in the config. Think building blocks for deep learning.
  • 10
    AutoKeras

    AutoKeras

    AutoKeras

    An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras is to make machine learning accessible to everyone. AutoKeras supports several tasks with an extremely simple interface.
  • 11
    MLlib

    MLlib

    Apache Software Foundation

    ​Apache Spark's MLlib is a scalable machine learning library that integrates seamlessly with Spark's APIs, supporting Java, Scala, Python, and R. It offers a comprehensive suite of algorithms and utilities, including classification, regression, clustering, collaborative filtering, and tools for constructing machine learning pipelines. MLlib's high-quality algorithms leverage Spark's iterative computation capabilities, delivering performance up to 100 times faster than traditional MapReduce implementations. It is designed to operate across diverse environments, running on Hadoop, Apache Mesos, Kubernetes, standalone clusters, or in the cloud, and accessing various data sources such as HDFS, HBase, and local files. This flexibility makes MLlib a robust solution for scalable and efficient machine learning tasks within the Apache Spark ecosystem. ​