Compare the Top Machine Learning Software that integrates with Keras as of July 2025

This a list of Machine Learning software that integrates with Keras. Use the filters on the left to add additional filters for products that have integrations with Keras. View the products that work with Keras in the table below.

What is Machine Learning Software for Keras?

Machine learning software enables developers and data scientists to build, train, and deploy models that can learn from data and make predictions or decisions without being explicitly programmed. These tools provide frameworks and algorithms for tasks such as classification, regression, clustering, and natural language processing. They often come with features like data preprocessing, model evaluation, and hyperparameter tuning, which help optimize the performance of machine learning models. With the ability to analyze large datasets and uncover patterns, machine learning software is widely used in industries like healthcare, finance, marketing, and autonomous systems. Overall, this software empowers organizations to leverage data for smarter decision-making and automation. Compare and read user reviews of the best Machine Learning software for Keras currently available using the table below. This list is updated regularly.

  • 1
    TensorFlow

    TensorFlow

    TensorFlow

    An end-to-end open source machine learning platform. TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries and community resources that lets researchers push the state-of-the-art in ML and developers easily build and deploy ML powered applications. Build and train ML models easily using intuitive high-level APIs like Keras with eager execution, which makes for immediate model iteration and easy debugging. Easily train and deploy models in the cloud, on-prem, in the browser, or on-device no matter what language you use. A simple and flexible architecture to take new ideas from concept to code, to state-of-the-art models, and to publication faster. Build, deploy, and experiment easily with TensorFlow.
    Starting Price: Free
  • 2
    Dataiku

    Dataiku

    Dataiku

    Dataiku is an advanced data science and machine learning platform designed to enable teams to build, deploy, and manage AI and analytics projects at scale. It empowers users, from data scientists to business analysts, to collaboratively create data pipelines, develop machine learning models, and prepare data using both visual and coding interfaces. Dataiku supports the entire AI lifecycle, offering tools for data preparation, model training, deployment, and monitoring. The platform also includes integrations for advanced capabilities like generative AI, helping organizations innovate and deploy AI solutions across industries.
  • 3
    Gradient

    Gradient

    Gradient

    Explore a new library or dataset in a notebook. Automate preprocessing, training, or testing with a 2orkflow. Bring your application to life with a deployment. Use notebooks, workflows, and deployments together or independently. Compatible with everything. Gradient supports all major frameworks and libraries. Gradient is powered by Paperspace's world-class GPU instances. Move faster with source control integration. Connect to GitHub to manage all your work & compute resources with git. Launch a GPU-enabled Jupyter Notebook from your browser in seconds. Use any library or framework. Easily invite collaborators or share a public link. A simple cloud workspace that runs on free GPUs. Get started in seconds with a notebook environment that's easy to use and share. Perfect for ML developers. A powerful no-fuss environment with loads of features that just works. Choose a pre-built template or bring your own. Try a free GPU!
    Starting Price: $8 per month
  • 4
    BentoML

    BentoML

    BentoML

    Serve your ML model in any cloud in minutes. Unified model packaging format enabling both online and offline serving on any platform. 100x the throughput of your regular flask-based model server, thanks to our advanced micro-batching mechanism. Deliver high-quality prediction services that speak the DevOps language and integrate perfectly with common infrastructure tools. Unified format for deployment. High-performance model serving. DevOps best practices baked in. The service uses the BERT model trained with the TensorFlow framework to predict movie reviews' sentiment. DevOps-free BentoML workflow, from prediction service registry, deployment automation, to endpoint monitoring, all configured automatically for your team. A solid foundation for running serious ML workloads in production. Keep all your team's models, deployments, and changes highly visible and control access via SSO, RBAC, client authentication, and auditing logs.
    Starting Price: Free
  • 5
    neptune.ai

    neptune.ai

    neptune.ai

    Neptune.ai is a machine learning operations (MLOps) platform designed to streamline the tracking, organizing, and sharing of experiments and model-building processes. It provides a comprehensive environment for data scientists and machine learning engineers to log, visualize, and compare model training runs, datasets, hyperparameters, and metrics in real-time. Neptune.ai integrates easily with popular machine learning libraries, enabling teams to efficiently manage both research and production workflows. With features that support collaboration, versioning, and experiment reproducibility, Neptune.ai enhances productivity and helps ensure that machine learning projects are transparent and well-documented across their lifecycle.
    Starting Price: $49 per month
  • 6
    Comet

    Comet

    Comet

    Manage and optimize models across the entire ML lifecycle, from experiment tracking to monitoring models in production. Achieve your goals faster with the platform built to meet the intense demands of enterprise teams deploying ML at scale. Supports your deployment strategy whether it’s private cloud, on-premise servers, or hybrid. Add two lines of code to your notebook or script and start tracking your experiments. Works wherever you run your code, with any machine learning library, and for any machine learning task. Easily compare experiments—code, hyperparameters, metrics, predictions, dependencies, system metrics, and more—to understand differences in model performance. Monitor your models during every step from training to production. Get alerts when something is amiss, and debug your models to address the issue. Increase productivity, collaboration, and visibility across all teams and stakeholders.
    Starting Price: $179 per user per month
  • 7
    Superwise

    Superwise

    Superwise

    Get in minutes what used to take years to build. Simple, customizable, scalable, secure, ML monitoring. Everything you need to deploy, maintain and improve ML in production. Superwise is an open platform that integrates with any ML stack and connects to your choice of communication tools. Want to take it further? Superwise is API-first and everything (and we mean everything) is accessible via our APIs. All from the comfort of the cloud of your choice. When it comes to ML monitoring you have full self-service control over everything. Configure metrics and policies through our APIs and SDK or simply select a monitoring template and set the sensitivity, conditions, and alert channels of your choice. Try Superwise out or contact us to learn more. Easily create alerts with Superwise’s ML monitoring policy templates and builder. Select from dozens of pre-build monitors ranging from data drift to equal opportunity, or customize policies to incorporate your domain expertise.
    Starting Price: Free
  • 8
    RazorThink

    RazorThink

    RazorThink

    RZT aiOS offers all of the benefits of a unified artificial intelligence platform and more, because it's not just a platform — it's a comprehensive Operating System that fully connects, manages and unifies all of your AI initiatives. And, AI developers now can do in days what used to take them months, because aiOS process management dramatically increases the productivity of AI teams. This Operating System offers an intuitive environment for AI development, letting you visually build models, explore data, create processing pipelines, run experiments, and view analytics. What's more is that you can do it all even without advanced software engineering skills.
  • 9
    Intel Tiber AI Studio
    Intel® Tiber™ AI Studio is a comprehensive machine learning operating system that unifies and simplifies the AI development process. The platform supports a wide range of AI workloads, providing a hybrid and multi-cloud infrastructure that accelerates ML pipeline development, model training, and deployment. With its native Kubernetes orchestration and meta-scheduler, Tiber™ AI Studio offers complete flexibility in managing on-prem and cloud resources. Its scalable MLOps solution enables data scientists to easily experiment, collaborate, and automate their ML workflows while ensuring efficient and cost-effective utilization of resources.
  • 10
    MLReef

    MLReef

    MLReef

    MLReef enables domain experts and data scientists to securely collaborate via a hybrid of pro-code & no-code development approaches. 75% increase in productivity due to distributed workloads. This enables teams to complete more ML projects faster. Domain experts and data scientists collaborate on the same platform reducing 100% of unnecessary communication ping-pong. MLReef works on your premises and uniquely enables 100% reproducibility and continuity. Rebuild all work at any time. You can use already well-known and established git repositories to create explorable, interoperable, and versioned AI modules. AI Modules created by your data scientists become drag-and-drop elements. These are adjustable by parameters, versioned, interoperable, and explorable within your entire organization. Data handling often requires expert knowledge that a single data scientist often lacks. MLReef enables your field experts to relieve your data processing task, reducing complexities.
  • 11
    Databricks Data Intelligence Platform
    The Databricks Data Intelligence Platform allows your entire organization to use data and AI. It’s built on a lakehouse to provide an open, unified foundation for all data and governance, and is powered by a Data Intelligence Engine that understands the uniqueness of your data. The winners in every industry will be data and AI companies. From ETL to data warehousing to generative AI, Databricks helps you simplify and accelerate your data and AI goals. Databricks combines generative AI with the unification benefits of a lakehouse to power a Data Intelligence Engine that understands the unique semantics of your data. This allows the Databricks Platform to automatically optimize performance and manage infrastructure in ways unique to your business. The Data Intelligence Engine understands your organization’s language, so search and discovery of new data is as easy as asking a question like you would to a coworker.
  • 12
    Weights & Biases

    Weights & Biases

    Weights & Biases

    Experiment tracking, hyperparameter optimization, model and dataset versioning with Weights & Biases (WandB). Track, compare, and visualize ML experiments with 5 lines of code. Add a few lines to your script, and each time you train a new version of your model, you'll see a new experiment stream live to your dashboard. Optimize models with our massively scalable hyperparameter search tool. Sweeps are lightweight, fast to set up, and plug in to your existing infrastructure for running models. Save every detail of your end-to-end machine learning pipeline — data preparation, data versioning, training, and evaluation. It's never been easier to share project updates. Quickly and easily implement experiment logging by adding just a few lines to your script and start logging results. Our lightweight integration works with any Python script. W&B Weave is here to help developers build and iterate on their AI applications with confidence.
  • 13
    MLflow

    MLflow

    MLflow

    MLflow is an open source platform to manage the ML lifecycle, including experimentation, reproducibility, deployment, and a central model registry. MLflow currently offers four components. Record and query experiments: code, data, config, and results. Package data science code in a format to reproduce runs on any platform. Deploy machine learning models in diverse serving environments. Store, annotate, discover, and manage models in a central repository. The MLflow Tracking component is an API and UI for logging parameters, code versions, metrics, and output files when running your machine learning code and for later visualizing the results. MLflow Tracking lets you log and query experiments using Python, REST, R API, and Java API APIs. An MLflow Project is a format for packaging data science code in a reusable and reproducible way, based primarily on conventions. In addition, the Projects component includes an API and command-line tools for running projects.
  • 14
    TruEra

    TruEra

    TruEra

    A machine learning monitoring solution that helps you easily oversee and troubleshoot high model volumes. With explainability accuracy that’s unparalleled and unique analyses that are not available anywhere else, data scientists avoid false alarms and dead ends, addressing critical problems quickly and effectively. Your machine learning models stay optimized, so that your business is optimized. TruEra’s solution is based on an explainability engine that, due to years of dedicated research and development, is significantly more accurate than current tools. TruEra’s enterprise-class AI explainability technology is without peer. The core diagnostic engine is based on six years of research at Carnegie Mellon University and dramatically outperforms competitors. The platform quickly performs sophisticated sensitivity analysis that enables data scientists, business users, and risk and compliance teams to understand exactly how and why a model makes predictions.
  • 15
    StreamFlux

    StreamFlux

    Fractal

    Data is crucial when it comes to building, streamlining and growing your business. However, getting the full value out of data can be a challenge, many organizations are faced with poor access to data, incompatible tools, spiraling costs and slow results. Simply put, leaders who can turn raw data into real results will thrive in today’s landscape. The key to this is empowering everyone across your business to be able to analyze, build and collaborate on end-to-end AI and machine learning solutions in one place, fast. Streamflux is a one-stop shop to meet your data analytics and AI challenges. Our self-serve platform allows you the freedom to build end-to-end data solutions, uses models to answer complex questions and assesses user behaviors. Whether you’re predicting customer churn and future revenue, or generating recommendations, you can go from raw data to genuine business impact in days, not months.
  • 16
    Polyaxon

    Polyaxon

    Polyaxon

    A Platform for reproducible and scalable Machine Learning and Deep Learning applications. Learn more about the suite of features and products that underpin today's most innovative platform for managing data science workflows. Polyaxon provides an interactive workspace with notebooks, tensorboards, visualizations,and dashboards. Collaborate with the rest of your team, share and compare experiments and results. Reproducible results with a built-in version control for code and experiments. Deploy Polyaxon in the cloud, on-premises or in hybrid environments, including single laptop, container management platforms, or on Kubernetes. Spin up or down, add more nodes, add more GPUs, and expand storage.
  • 17
    Zepl

    Zepl

    Zepl

    Sync, search and manage all the work across your data science team. Zepl’s powerful search lets you discover and reuse models and code. Use Zepl’s enterprise collaboration platform to query data from Snowflake, Athena or Redshift and build your models in Python. Use pivoting and dynamic forms for enhanced interactions with your data using heatmap, radar, and Sankey charts. Zepl creates a new container every time you run your notebook, providing you with the same image each time you run your models. Invite team members to join a shared space and work together in real time or simply leave their comments on a notebook. Use fine-grained access controls to share your work. Allow others have read, edit, and run access as well as enable collaboration and distribution. All notebooks are auto-saved and versioned. You can name, manage and roll back all versions through an easy-to-use interface, and export seamlessly into Github.
  • 18
    Amazon SageMaker Debugger
    Optimize ML models by capturing training metrics in real-time and sending alerts when anomalies are detected. Automatically stop training processes when the desired accuracy is achieved to reduce the time and cost of training ML models. Automatically profile and monitor system resource utilization and send alerts when resource bottlenecks are identified to continuously improve resource utilization. Amazon SageMaker Debugger can reduce troubleshooting during training from days to minutes by automatically detecting and alerting you to remediate common training errors such as gradient values becoming too large or too small. Alerts can be viewed in Amazon SageMaker Studio or configured through Amazon CloudWatch. Additionally, the SageMaker Debugger SDK enables you to automatically detect new classes of model-specific errors such as data sampling, hyperparameter values, and out-of-bound values.
  • 19
    AutoKeras

    AutoKeras

    AutoKeras

    An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras is to make machine learning accessible to everyone. AutoKeras supports several tasks with an extremely simple interface.
  • 20
    Lambda GPU Cloud
    Train the most demanding AI, ML, and Deep Learning models. Scale from a single machine to an entire fleet of VMs with a few clicks. Start or scale up your Deep Learning project with Lambda Cloud. Get started quickly, save on compute costs, and easily scale to hundreds of GPUs. Every VM comes preinstalled with the latest version of Lambda Stack, which includes major deep learning frameworks and CUDA® drivers. In seconds, access a dedicated Jupyter Notebook development environment for each machine directly from the cloud dashboard. For direct access, connect via the Web Terminal in the dashboard or use SSH directly with one of your provided SSH keys. By building compute infrastructure at scale for the unique requirements of deep learning researchers, Lambda can pass on significant savings. Benefit from the flexibility of using cloud computing without paying a fortune in on-demand pricing when workloads rapidly increase.
    Starting Price: $1.25 per hour
  • Previous
  • You're on page 1
  • Next