Best Machine Learning Software for Azure Databricks

Compare the Top Machine Learning Software that integrates with Azure Databricks as of July 2025

This a list of Machine Learning software that integrates with Azure Databricks. Use the filters on the left to add additional filters for products that have integrations with Azure Databricks. View the products that work with Azure Databricks in the table below.

What is Machine Learning Software for Azure Databricks?

Machine learning software enables developers and data scientists to build, train, and deploy models that can learn from data and make predictions or decisions without being explicitly programmed. These tools provide frameworks and algorithms for tasks such as classification, regression, clustering, and natural language processing. They often come with features like data preprocessing, model evaluation, and hyperparameter tuning, which help optimize the performance of machine learning models. With the ability to analyze large datasets and uncover patterns, machine learning software is widely used in industries like healthcare, finance, marketing, and autonomous systems. Overall, this software empowers organizations to leverage data for smarter decision-making and automation. Compare and read user reviews of the best Machine Learning software for Azure Databricks currently available using the table below. This list is updated regularly.

  • 1
    Dagster

    Dagster

    Dagster Labs

    Dagster is a next-generation orchestration platform for the development, production, and observation of data assets. Unlike other data orchestration solutions, Dagster provides you with an end-to-end development lifecycle. Dagster gives you control over your disparate data tools and empowers you to build, test, deploy, run, and iterate on your data pipelines. It makes you and your data teams more productive, your operations more robust, and puts you in complete control of your data processes as you scale. Dagster brings a declarative approach to the engineering of data pipelines. Your team defines the data assets required, quickly assessing their status and resolving any discrepancies. An assets-based model is clearer than a tasks-based one and becomes a unifying abstraction across the whole workflow.
    Starting Price: $0
  • 2
    Union Cloud

    Union Cloud

    Union.ai

    Union.ai is an award-winning, Flyte-based data and ML orchestrator for scalable, reproducible ML pipelines. With Union.ai, you can write your code locally and easily deploy pipelines to remote Kubernetes clusters. “Flyte’s scalability, data lineage, and caching capabilities enable us to train hundreds of models on petabytes of geospatial data, giving us an edge in our business.” — Arno, CTO at Blackshark.ai “With Flyte, we want to give the power back to biologists. We want to stand up something that they can play around with different parameters for their models because not every … parameter is fixed. We want to make sure we are giving them the power to run the analyses.” — Krishna Yeramsetty, Principal Data Scientist at Infinome “Flyte plays a vital role as a key component of Gojek's ML Platform by providing exactly that." — Pradithya Aria Pura, Principal Engineer at Goj
    Starting Price: Free (Flyte)
  • 3
    ZenML

    ZenML

    ZenML

    Simplify your MLOps pipelines. Manage, deploy, and scale on any infrastructure with ZenML. ZenML is completely free and open-source. See the magic with just two simple commands. Set up ZenML in a matter of minutes, and start with all the tools you already use. ZenML standard interfaces ensure that your tools work together seamlessly. Gradually scale up your MLOps stack by switching out components whenever your training or deployment requirements change. Keep up with the latest changes in the MLOps world and easily integrate any new developments. Define simple and clear ML workflows without wasting time on boilerplate tooling or infrastructure code. Write portable ML code and switch from experimentation to production in seconds. Manage all your favorite MLOps tools in one place with ZenML's plug-and-play integrations. Prevent vendor lock-in by writing extensible, tooling-agnostic, and infrastructure-agnostic code.
    Starting Price: Free
  • 4
    Chalk

    Chalk

    Chalk

    Powerful data engineering workflows, without the infrastructure headaches. Complex streaming, scheduling, and data backfill pipelines, are all defined in simple, composable Python. Make ETL a thing of the past, fetch all of your data in real-time, no matter how complex. Incorporate deep learning and LLMs into decisions alongside structured business data. Make better predictions with fresher data, don’t pay vendors to pre-fetch data you don’t use, and query data just in time for online predictions. Experiment in Jupyter, then deploy to production. Prevent train-serve skew and create new data workflows in milliseconds. Instantly monitor all of your data workflows in real-time; track usage, and data quality effortlessly. Know everything you computed and data replay anything. Integrate with the tools you already use and deploy to your own infrastructure. Decide and enforce withdrawal limits with custom hold times.
    Starting Price: Free
  • 5
    Databricks Data Intelligence Platform
    The Databricks Data Intelligence Platform allows your entire organization to use data and AI. It’s built on a lakehouse to provide an open, unified foundation for all data and governance, and is powered by a Data Intelligence Engine that understands the uniqueness of your data. The winners in every industry will be data and AI companies. From ETL to data warehousing to generative AI, Databricks helps you simplify and accelerate your data and AI goals. Databricks combines generative AI with the unification benefits of a lakehouse to power a Data Intelligence Engine that understands the unique semantics of your data. This allows the Databricks Platform to automatically optimize performance and manage infrastructure in ways unique to your business. The Data Intelligence Engine understands your organization’s language, so search and discovery of new data is as easy as asking a question like you would to a coworker.
  • Previous
  • You're on page 1
  • Next