Compare the Top Machine Learning Software for Startups as of October 2025 - Page 9

  • 1
    Oracle Data Science
    A data science platform that improves productivity with unparalleled abilities. Build and evaluate higher-quality machine learning (ML) models. Increase business flexibility by putting enterprise-trusted data to work quickly and support data-driven business objectives with easier deployment of ML models. Using cloud-based platforms to discover new business insights. Building a machine learning model is an iterative process. In this ebook, we break down the process and describe how machine learning models are built. Explore notebooks and build or test machine learning algorithms. Try AutoML and see data science results. Build high-quality models faster and easier. Automated machine learning capabilities rapidly examine the data and recommend the optimal data features and best algorithms. Additionally, automated machine learning tunes the model and explains the model’s results.
  • 2
    Xilinx

    Xilinx

    Xilinx

    The Xilinx’s AI development platform for AI inference on Xilinx hardware platforms consists of optimized IP, tools, libraries, models, and example designs. It is designed with high efficiency and ease-of-use in mind, unleashing the full potential of AI acceleration on Xilinx FPGA and ACAP. Supports mainstream frameworks and the latest models capable of diverse deep learning tasks. Provides a comprehensive set of pre-optimized models that are ready to deploy on Xilinx devices. You can find the closest model and start re-training for your applications! Provides a powerful open source quantizer that supports pruned and unpruned model quantization, calibration, and fine tuning. The AI profiler provides layer by layer analysis to help with bottlenecks. The AI library offers open source high-level C++ and Python APIs for maximum portability from edge to cloud. Efficient and scalable IP cores can be customized to meet your needs of many different applications.
  • 3
    Kepler

    Kepler

    Stradigi AI

    Leverage Kepler’s Automated Data Science Workflows and remove the need for coding and machine learning experience. Onboard quickly and generate data-driven insights unique to your organization and your data. Receive continuous updates & additional Workflows built by our world-class AI and ML team via our SaaS-based model. Scale AI and accelerate time-to-value with a platform that grows with your business using the team and skills already present within your organization. Address complex business problems with advanced AI and machine learning capabilities without the need for technical ML experience. Leverage state-of-the-art, end-to-end automation, an extensive library of AI algorithms, and the ability to quickly deploy machine learning models. Organizations are using Kepler to augment and automate critical business processes to improve productivity and agility.
  • 4
    IceCream Labs

    IceCream Labs

    IceCream Labs

    We ​help our clients ​leverage visual AI to solve real-world business problems​. Our team of skilled data scientists and machine learning engineers ​will quickly train and deliver highly precise and accurate machine learning models for your visual data. IceCream Labs is the leading enterprise AI solution company. IceCream Labs provides solutions for retail, digital media and higher education. The company’s expertise is developing machine learning and deep learning models to solve real world business problems using text, image and numerical data. Try IceCream Labs if your business ​handles visual data like images, video and documents. If you need to identify what’s in an image or a document, we can help you. ​If you need to quickly train and deploy a machine learning model, IceCream Labs is the answer. Talk to our AI experts and get sales performance improvements across your product line.
  • 5
    Alfi

    Alfi

    Alfi

    Alfi, Inc. engages in creating interactive digital out-of-home advertising experiences. Alfi utilizes artificial intelligence and computer vision to better serve ads to people. Alfi’s proprietary Ai algorithm understands small facial cues and perceptual details that make potential customers a good candidate for a particular product. The automation works in a way that respects user privacy; without tracking, storing cookies, or using identifiable personal information. Ad agencies are empowered to examine real-time analytics data including interactive experiences, engagement, sentiment, and click-through rate that are otherwise unavailable to out-of-home advertisers. Alfi, powered by AI and machine learning, collects data to understand human behavior for improved analytics with relevant content for a better consumer experience.
  • 6
    Neural Magic

    Neural Magic

    Neural Magic

    GPUs bring data in and out quickly, but have little locality of reference because of their small caches. They are geared towards applying a lot of compute to little data, not little compute to a lot of data. The networks designed to run on them therefore execute full layer after full layer in order to saturate their computational pipeline (see Figure 1 below). In order to deal with large models, given their small memory size (tens of gigabytes), GPUs are grouped together and models are distributed across them, creating a complex and painful software stack, complicated by the need to deal with many levels of communication and synchronization among separate machines. CPUs, on the other hand, have large, much faster caches than GPUs, and have an abundance of memory (terabytes). A typical CPU server can have memory equivalent to tens or even hundreds of GPUs. CPUs are perfect for a brain-like ML world in which parts of an extremely large network are executed piecemeal, as needed.
  • 7
    TruEra

    TruEra

    TruEra

    A machine learning monitoring solution that helps you easily oversee and troubleshoot high model volumes. With explainability accuracy that’s unparalleled and unique analyses that are not available anywhere else, data scientists avoid false alarms and dead ends, addressing critical problems quickly and effectively. Your machine learning models stay optimized, so that your business is optimized. TruEra’s solution is based on an explainability engine that, due to years of dedicated research and development, is significantly more accurate than current tools. TruEra’s enterprise-class AI explainability technology is without peer. The core diagnostic engine is based on six years of research at Carnegie Mellon University and dramatically outperforms competitors. The platform quickly performs sophisticated sensitivity analysis that enables data scientists, business users, and risk and compliance teams to understand exactly how and why a model makes predictions.
  • 8
    Gretel

    Gretel

    Gretel.ai

    Privacy engineering tools delivered to you as APIs. Synthesize and transform data in minutes. Build trust with your users and community. Gretel’s APIs grant immediate access to creating anonymized or synthetic datasets so you can work safely with data while preserving privacy. Keeping the pace with development velocity requires faster access to data. Gretel is accelerating access to data with data privacy tools that bypass blockers and fuel Machine Learning and AI applications. Keep your data contained by running Gretel containers in your own environment or scale out workloads to the cloud in seconds with Gretel Cloud runners. Using our cloud GPUs makes it radically more effortless for developers to train and generate synthetic data. Scale workloads automatically with no infrastructure to set up and manage. Invite team members to collaborate on cloud projects and share data across teams.
  • 9
    Rasgo

    Rasgo

    Rasgo

    Rasgo brings the power of GPT-4 to enterprise data analytics with its advanced platform, allowing businesses to leverage AI-driven insights directly from their enterprise data warehouses (EDWs). The platform securely integrates with existing data systems to automate the extraction and interpretation of meaningful insights, reducing the need for manual data manipulation. Rasgo’s AI agents use natural language to interact with data, uncover valuable trends, and deliver continuous, proactive insights, empowering teams to make data-informed decisions and driving operational efficiency 24/7.
  • 10
    Torch

    Torch

    Torch

    Torch is a scientific computing framework with wide support for machine learning algorithms that puts GPUs first. It is easy to use and efficient, thanks to an easy and fast scripting language, LuaJIT, and an underlying C/CUDA implementation. The goal of Torch is to have maximum flexibility and speed in building your scientific algorithms while making the process extremely simple. Torch comes with a large ecosystem of community-driven packages in machine learning, computer vision, signal processing, parallel processing, image, video, audio and networking among others, and builds on top of the Lua community. At the heart of Torch are the popular neural network and optimization libraries which are simple to use, while having maximum flexibility in implementing complex neural network topologies. You can build arbitrary graphs of neural networks, and parallelize them over CPUs and GPUs in an efficient manner.
  • 11
    SHARK

    SHARK

    SHARK

    SHARK is a fast, modular, feature-rich open-source C++ machine learning library. It provides methods for linear and nonlinear optimization, kernel-based learning algorithms, neural networks, and various other machine learning techniques. It serves as a powerful toolbox for real-world applications as well as research. Shark depends on Boost and CMake. It is compatible with Windows, Solaris, MacOS X, and Linux. Shark is licensed under the permissive GNU Lesser General Public License. Shark provides an excellent trade-off between flexibility and ease-of-use on the one hand, and computational efficiency on the other. Shark offers numerous algorithms from various machine learning and computational intelligence domains in a way that they can be easily combined and extended. Shark comes with a lot of powerful algorithms that are to our best knowledge not implemented in any other library.
  • 12
    Automaton AI

    Automaton AI

    Automaton AI

    With Automaton AI’s ADVIT, create, manage and develop high-quality training data and DNN models all in one place. Optimize the data automatically and prepare it for each phase of the computer vision pipeline. Automate the data labeling processes and streamline data pipelines in-house. Manage the structured and unstructured video/image/text datasets in runtime and perform automatic functions that refine your data in preparation for each step of the deep learning pipeline. Upon accurate data labeling and QA, you can train your own model. DNN training needs hyperparameter tuning like batch size, learning, rate, etc. Optimize and transfer learning on trained models to increase accuracy. Post-training, take the model to production. ADVIT also does model versioning. Model development and accuracy parameters can be tracked in run-time. Increase the model accuracy with a pre-trained DNN model for auto-labeling.
  • 13
    Graviti

    Graviti

    Graviti

    Unstructured data is the future of AI. Unlock this future now and build an ML/AI pipeline that scales all of your unstructured data in one place. Use better data to deliver better models, only with Graviti. Get to know the data platform that enables AI developers with management, query, and version control features that are designed for unstructured data. Quality data is no longer a pricey dream. Manage your metadata, annotation, and predictions in one place. Customize filters and visualize filtering results to get you straight to the data that best match your needs. Utilize a Git-like structure to manage data versions and collaborate with your teammates. Role-based access control and visualization of version differences allows your team to work together safely and flexibly. Automate your data pipeline with Graviti’s built-in marketplace and workflow builder. Level-up to fast model iterations with no more grinding.
  • 14
    Fido

    Fido

    Fido

    Fido is a light-weight, open-source, and highly modular C++ machine learning library. The library is targeted towards embedded electronics and robotics. Fido includes implementations of trainable neural networks, reinforcement learning methods, genetic algorithms, and a full-fledged robotic simulator. Fido also comes packaged with a human-trainable robot control system as described in Truell and Gruenstein. While the simulator is not in the most recent release, it can be found for experimentation on the simulator branch.
  • 15
    Accord.NET Framework

    Accord.NET Framework

    Accord.NET Framework

    The Accord.NET Framework is a .NET machine learning framework combined with audio and image processing libraries completely written in C#. It is a complete framework for building production-grade computer vision, computer audition, signal processing and statistics applications even for commercial use. A comprehensive set of sample applications provide a fast start to get up and running quickly, and an extensive documentation and wiki helps fill in the details.
  • 16
    Cauliflower

    Cauliflower

    Cauliflower

    Whether for a service or a product, whether a snapshot or monitoring over time - Cauliflower processes feedback and comments from various application areas. Using Artificial Intelligence (AI), Cauliflower identifies the most important topics, their relevance, evaluation and relationships. In-house developed machine learning models for the extraction of content and evaluation of sentiment. Intuitive dashboards with filter options and drill-downs. Use included variables for language, weight, ID, time or location. Define your own filter variables in the dropdown. Cauliflower translates the results into a uniform language if required. Define a company-wide language about customer feedback instead of reading it sporadically and quoting individual opinions.
  • 17
    DreamQuark Brain
    AI can be slow, confusing, and costly. Brain empowers wealth managers to make hyper-personalized insights simply and quickly. Serve your clients better and grow smarter with Brain. Turn your data into user-friendly insights in a few clicks to guide your next best action. Brain’s explainable AI gives advisors the reasons behind every recommendation. Use Brain’s CX application or integrate it on your own CX platform and cloud provider. Increase your revenues by predicting which clients will respond best to cross-sell and upsell opportunities. Improve the performance of your campaigns by identifying which clients are likely to take an interest in a product and why. Retain your clients before it’s too late by quickly discovering who is most likely to leave and why. Brain’s explainable AI makes hyper-personalized insights understandable and easier for advisors to act on. Brain simplifies and automates the creation and maintenance of insights, saving you time and money.
  • 18
    Mind Foundry

    Mind Foundry

    Mind Foundry

    Mind Foundry is an artificial intelligence company operating at the intersection of research, innovation, and usability to empower teams with AI that is built for humans. Founded by world-leading academics, Mind Foundry develops AI solutions that help organisations in the public and private sectors tackle high-stakes problems, focusing on human outcomes and the long-term impact of AI interventions. Our intrinsically collaborative platform powers AI design, testing and deployment and enables stakeholders to manage their AI investment responsibly with key focus on performance, efficiency and ethical impact. Built on a cornerstone of scientific principles and an understanding that you can’t add things like ethics and transparency after the fact. The fusion of experience design and quantitative methods that makes collaboration between humans and AI more intuitive, efficient and powerful.
  • 19
    Infor Coleman
    Infor Coleman™ brings tangible opportunity and ROI to artificial intelligence (AI) projects with incredible speed and clarity. With Coleman, AI projects don’t require complex skillsets or unpredictable service engagements. Coleman makes historically complex technologies like natural language processing, intelligent automation, machine learning, and voice user experience much more accessible because they are built on the foundation of the Infor OS technology platform. The components that make up Coleman are designed to understand, trust, and build value as enterprise users work with them. Artificial intelligence needn’t be a whitespace project. The Coleman product suite allows companies to create value at an incredible speed with no development effort.
  • 20
    NuEnergy.ai Machine Trust Platform (MTP)
    NuEnergy.ai’s Machine Trust Platform™ (MTP) is a unique cloud-based software platform to measure, monitor, and build trust in your artificial intelligence (AI) technology, whether you’re developing it, procuring it, or deploying it. MTP measures essential trust parameters including privacy, ethics, transparency, and bias metrics and protects against the risks of AI drift. The software lets you assess your AI technologies against key risk-mitigating metrics, third-party frameworks, and standards to help ensure governance, ethical and regulatory guidelines are met. It offers flexibility and scope for configurations to ensure you have compatibility to enhance trust in your AI technologies. Global standards, including the Government of Canada Algorithmic Impact Assessment (AIA), are integrated into the platform, which can be customized to include other relevant governance standards. You can choose from an ever-growing list of NuEnergy.ai’s library of qualified AI trust tools.
  • 21
    Fractal Analytics
    Reveal valuable insights by accurately recognizing objects in images and videos. From surveilling people in real-time at events to detecting if products are in the right place in shopping aisles, AI can drive value in many ways. Create in-depth analyses by placing image objects into relevant segments. AI-based algorithms can help insurers analyze home and auto damage to create more accurate claims for customers. Get immediate insights to take action when it matters most. AI algorithms enable real-time processing for a variety of valuable uses, such as face recognition. Understand customer behavior by identifying their actions from video, both in-store and in real-time. AI helps reveal how customers interact with products and brands to drive better experiences. AI-based analytics on satellite images can be used to detect traffic in real-time, analyze parking lots, and segment buildings.
  • 22
    StreamFlux

    StreamFlux

    Fractal

    Data is crucial when it comes to building, streamlining and growing your business. However, getting the full value out of data can be a challenge, many organizations are faced with poor access to data, incompatible tools, spiraling costs and slow results. Simply put, leaders who can turn raw data into real results will thrive in today’s landscape. The key to this is empowering everyone across your business to be able to analyze, build and collaborate on end-to-end AI and machine learning solutions in one place, fast. Streamflux is a one-stop shop to meet your data analytics and AI challenges. Our self-serve platform allows you the freedom to build end-to-end data solutions, uses models to answer complex questions and assesses user behaviors. Whether you’re predicting customer churn and future revenue, or generating recommendations, you can go from raw data to genuine business impact in days, not months.
  • 23
    Scraawl

    Scraawl

    Scraawl

    Scraawl is a suite of data analytics tools designed to empower you to gain more from your data. Whether your problem set focuses on publicly available data, images and video, unstructured text, or all of the above, Scraawl has powerful tools to enhance your analyses. Scraawl leverages state-of-the-art artificial intelligence and machine learning techniques to provide actionable insights through analytics. Our team is a multi-disciplinary group of developers, researchers, and data scientists dedicated to bringing cutting edge analytics to users. Scraawl SocL® is an enterprise-level, easy-to-use, web-based PAI listening and analytics tool. Scraawl SocL® searches, analyzes, and visualizes online conversations and news data, providing a user with a detailed 360-degree analysis.
  • 24
    Wallaroo.AI

    Wallaroo.AI

    Wallaroo.AI

    Wallaroo facilitates the last-mile of your machine learning journey, getting ML into your production environment to impact the bottom line, with incredible speed and efficiency. Wallaroo is purpose-built from the ground up to be the easy way to deploy and manage ML in production, unlike Apache Spark, or heavy-weight containers. ML with up to 80% lower cost and easily scale to more data, more models, more complex models. Wallaroo is designed to enable data scientists to quickly and easily deploy their ML models against live data, whether to testing environments, staging, or prod. Wallaroo supports the largest set of machine learning training frameworks possible. You’re free to focus on developing and iterating on your models while letting the platform take care of deployment and inference at speed and scale.
  • 25
    Fosfor Decision Cloud
    Everything you need to make better business decisions. The Fosfor Decision Cloud unifies the modern data ecosystem to deliver the long-sought promise of AI: enhanced business outcomes. The Fosfor Decision Cloud unifies the components of your data stack into a modern decision stack, built to amplify business outcomes. Fosfor works seamlessly with its partners to create the modern decision stack, which delivers unprecedented value from your data investments.
  • 26
    HPE Ezmeral ML OPS

    HPE Ezmeral ML OPS

    Hewlett Packard Enterprise

    HPE Ezmeral ML Ops provides pre-packaged tools to operationalize machine learning workflows at every stage of the ML lifecycle, from pilot to production, giving you DevOps-like speed and agility. Quickly spin-up environments with your preferred data science tools to explore a variety of enterprise data sources and simultaneously experiment with multiple machine learning or deep learning frameworks to pick the best fit model for the business problems you need to address. Self-service, on-demand environments for development and test or production workloads. Highly performant training environments—with separation of compute and storage—that securely access shared enterprise data sources in on-premises or cloud-based storage. HPE Ezmeral ML Ops enables source control with out of the box integration tools such as GitHub. Store multiple models (multiple versions with metadata) for various runtime engines in the model registry.
  • 27
    Kubeflow

    Kubeflow

    Kubeflow

    The Kubeflow project is dedicated to making deployments of machine learning (ML) workflows on Kubernetes simple, portable and scalable. Our goal is not to recreate other services, but to provide a straightforward way to deploy best-of-breed open-source systems for ML to diverse infrastructures. Anywhere you are running Kubernetes, you should be able to run Kubeflow. Kubeflow provides a custom TensorFlow training job operator that you can use to train your ML model. In particular, Kubeflow's job operator can handle distributed TensorFlow training jobs. Configure the training controller to use CPUs or GPUs and to suit various cluster sizes. Kubeflow includes services to create and manage interactive Jupyter notebooks. You can customize your notebook deployment and your compute resources to suit your data science needs. Experiment with your workflows locally, then deploy them to a cloud when you're ready.
  • 28
    Pachyderm

    Pachyderm

    Pachyderm

    Pachyderm’s Data Versioning gives teams an automated and performant way to keep track of all data changes. File-based versioning provides a complete audit trail for all data and artifacts across pipeline stages, including intermediate results. Stored as native objects (not metadata pointers) so that versioning is automated and guaranteed. Autoscale with parallel processing of data without writing additional code. Incremental processing saves compute by only processing differences and automatically skipping duplicate data. Pachyderm’s Global IDs make it easy for teams to track any result all the way back to its raw input, including all analysis, parameters, code, and intermediate results. The Pachyderm Console provides an intuitive visualization of your DAG (directed acyclic graph), and aids in reproducibility with Global IDs.
  • 29
    Polyaxon

    Polyaxon

    Polyaxon

    A Platform for reproducible and scalable Machine Learning and Deep Learning applications. Learn more about the suite of features and products that underpin today's most innovative platform for managing data science workflows. Polyaxon provides an interactive workspace with notebooks, tensorboards, visualizations,and dashboards. Collaborate with the rest of your team, share and compare experiments and results. Reproducible results with a built-in version control for code and experiments. Deploy Polyaxon in the cloud, on-premises or in hybrid environments, including single laptop, container management platforms, or on Kubernetes. Spin up or down, add more nodes, add more GPUs, and expand storage.
  • 30
    ElectrifAi

    ElectrifAi

    ElectrifAi

    Proven commercial value in weeks, for high value use cases across all major verticals. ElectrifAi has the largest library of pre-built machine learning models that seamlessly integrate into existing workflows to provide fast and reliable results. Get our domain expertise through pre-trained, pre-structured, or brand-new models. Building machine learning is risky and time-consuming. ElectrifAi delivers superior, fast and reliable results with over 1,000 ready-to-deploy machine learning models that seamlessly integrate into existing workflows. With comprehensive capabilities to deploy proven ML models, we bring you solutions faster. We make the machine learning models, complete the data ingestion and clean up the data. Our domain experts use your existing data to train the selected model that works best for your use case.