Best Machine Learning Software - Page 11

Compare the Top Machine Learning Software as of August 2025 - Page 11

  • 1
    Feast

    Feast

    Tecton

    Make your offline data available for real-time predictions without having to build custom pipelines. Ensure data consistency between offline training and online inference, eliminating train-serve skew. Standardize data engineering workflows under one consistent framework. Teams use Feast as the foundation of their internal ML platforms. Feast doesn’t require the deployment and management of dedicated infrastructure. Instead, it reuses existing infrastructure and spins up new resources when needed. You are not looking for a managed solution and are willing to manage and maintain your own implementation. You have engineers that are able to support the implementation and management of Feast. You want to run pipelines that transform raw data into features in a separate system and integrate with it. You have unique requirements and want to build on top of an open source solution.
  • 2
    Butler

    Butler

    Butler

    Butler is a platform that helps developers turn AI into easy to use APIs. Create, train, and deploy AI Models in minutes. No AI experience required. Use Butler’s easy-to-use user interface to build a comprehensive labeled data set. Forget about painful labeling exercises. Butler automatically chooses and trains the correct ML model for your use case. No need to spend hours analyzing which models perform the best. With a library of features to customize, Butler enables you to tune your model to your exact requirements. Stop spending time wrestling with rigid predefined models or building homegrown custom solutions. Parse key data fields and tables from any unstructured document or image. Free your users from manual data entry with lightning fast document parsing APIs. Extract information from free form text like names, places, terms and any other custom data. Make your product understand your users the same way you do.
  • 3
    Incedo Lighthouse
    Next generation cloud native AI powered Decision Automation platform to develop use case specific solutions. Incedo LighthouseTM harnesses the power of AI in a low code environment to deliver insights and action recommendations, every day, by leveraging the capabilities of Big Data at superfast speed. Incedo LighthouseTM enables you to increase revenue potential by optimizing customer experiences and delivering hyper-personalized recommendations. Our AI and ML driven models allow personalization across the customer lifecycle. Incedo LighthouseTM allows you to achieve lower costs by accelerating the loop of problem discovery, generation of insights and execution of targeted actions. The platform is powered by our ML driven metric monitoring and root cause analyses models. Incedo LighthouseTM monitors the quality of the high volumes of frequent data loads and leverages AI/ML to fix some of the quality issues, thereby improving trust in data.
  • 4
    integrate.ai

    integrate.ai

    integrate.ai

    We help developers solve the world’s most important problems by unlocking the value from sensitive data, without increasing risk. ‍ That's why we're building tools for privacy-safe machine learning and analytics for the distributed future of data. Data of all types are being generated and stored in the cloud, on prem, and increasingly at the edge. The cost of de-identifying, moving, centrally storing, and managing high volumes of data can be prohibitive. HIPAA, GDPR, PIPEDA, CCPA and other regulations limit the ways data can come together, especially across jurisdictions. With federated learning and analytics, only model parameters leave each private server, so data custodians retain full control of their data. Grow your business with existing customers by building valuable new product features that harness the collective intelligence of your customers' data.
  • 5
    Zepl

    Zepl

    Zepl

    Sync, search and manage all the work across your data science team. Zepl’s powerful search lets you discover and reuse models and code. Use Zepl’s enterprise collaboration platform to query data from Snowflake, Athena or Redshift and build your models in Python. Use pivoting and dynamic forms for enhanced interactions with your data using heatmap, radar, and Sankey charts. Zepl creates a new container every time you run your notebook, providing you with the same image each time you run your models. Invite team members to join a shared space and work together in real time or simply leave their comments on a notebook. Use fine-grained access controls to share your work. Allow others have read, edit, and run access as well as enable collaboration and distribution. All notebooks are auto-saved and versioned. You can name, manage and roll back all versions through an easy-to-use interface, and export seamlessly into Github.
  • 6
    TAZI

    TAZI

    TAZI

    TAZI is highly focused on business outcome and ROI of AI predictions. TAZI can be used by any business user, whether it is a business intelligence analyst or a C-level executive. TAZI Profiler to immediately understand and gain insights on your ML-Ready data sources. TAZI Business Dashboards and Explanation model to understand and validate the AI models for production. Detect and predict different subsets of your operations for ROI optimization. Empowers you to check data quality and important statistics by automating the manual work usually involved in data discovery and preparation. Makes feature engineering easier with recommendations even for composite features and data transformations.
  • 7
    Yottamine

    Yottamine

    Yottamine

    Our highly innovative machine learning technology is designed specifically to accurately predict financial time series where only a small number of training data points are available. Advance AI is computationally consuming. YottamineAI leverages the cloud to eliminate the need to invest time and money on managing hardware, shortening the time to benefit from higher ROI significantly. Strong encryption and protection of keys ensure trade secrets stay safe. We follow the best practices of AWS and utilize strong encryption to secure your data. We evaluate how your existing or future data can generate predictive analytics in helping you make information-based decisions. If you need predictive analytics on a project basis, Yottamine Consulting Services provides project-based consulting to accommodate your data-mining needs.
  • 8
    Arthur AI
    Track model performance to detect and react to data drift, improving model accuracy for better business outcomes. Build trust, ensure compliance, and drive more actionable ML outcomes with Arthur’s explainability and transparency APIs. Proactively monitor for bias, track model outcomes against custom bias metrics, and improve the fairness of your models. See how each model treats different population groups, proactively 
identify bias, and use Arthur's proprietary bias mitigation techniques. Arthur scales up and down to ingest up to 1MM transactions 
per second and deliver insights quickly. Actions can only be performed by authorized users. Individual teams/departments can have isolated environments with specific access control policies. Data is immutable once ingested, which prevents manipulation of metrics/insights.
  • 9
    Materials Zone

    Materials Zone

    Materials Zone

    From materials data to better products, faster! Accelerates R&D, scale-up, and optimizes manufacturing QC and supply chain decisions. Discover new materials, use ML guidance to forecast outcomes, and achieve faster and improved results. Build a model on your way to production. Test the model's limits behind your products to design cost-efficient and robust production lines. Use models to predict future failures based on supplied materials informatics and production line parameters. The Materials Zone platform aggregates data from independent entities, materials providers, factories, or manufacturing facilities, communicating between them through a secured platform. By using machine learning (ML) algorithms on your experimental data, you can discover new materials with desired properties, generate ‘recipes’ for materials synthesis, build tools to analyze unique measurements automatically, and retrieve insights.
  • 10
    Diveplane AI

    Diveplane AI

    Diveplane

    With the proliferation of AI tools there has never been more critical time to support the ethical use of technology and data. Diveplane ® offers AI-powered business solutions across multiple industries. With six patents approved and multiple pending, our groundbreaking next generation AI gives you full understanding and decision transparency in support of your ethical AI policies and data privacy strategies. We designed this technology to put machines and people in harmony to produce verifiable data intelligence in support of leading-edge competitive business strategies. Diveplane allows humans to understand exactly WHY a decision was made, shining where neural networks can’t. Accountability is important, and Diveplane allows the user to see exactly what data influenced a decision, as well as how influential it was.
  • 11
    LatticeFlow

    LatticeFlow

    LatticeFlow

    Empower your ML teams to deliver robust and performant AI models by auto-diagnosing and improving your data and models. The only platform that can auto-diagnose data and models, empowering ML teams to deliver robust and performant AI models faster. Covering camera noise, sign stickers, shadows, and others. Confirmed with real-world images on which the model systematically fails. While improving model accuracy by 0.2%. Our mission is to change the way the next generation of AI systems is built. If we are to use AI in our businesses, at doctor’s offices, on our roads, or in our homes, we need to build AI systems that companies and users can trust. We are leading AI professors and researchers from ETH Zurich with broad expertise in formal methods, symbolic reasoning, and machine learning. We started LatticeFlow with the goal of building the world’s first platform that enables companies to deliver robust AI models that work reliably in the wild.
  • 12
    RTE Runner

    RTE Runner

    Cybersoft North America

    It is the artificial intelligence solution to analyze complex data, empower decision making and transform human and industrial productivity. It is the automated machine solution that has the potential to reduce the burden on already overwhelmed teams by automating the main bottlenecks in the data science process. It breaks data silos with the intuitive creation of data pipelines that feed live data into deployed models and then dynamically creates model execution pipelines to obtain real-time predictions on incoming data. It monitors the health of deployed models based on the confidence of predictions to inform model maintenance.
  • 13
    SparkAI

    SparkAI

    SparkAI

    SparkAI combines people and technology to resolve AI edge cases, false positives, and other exceptions encountered live in production, so you can launch & scale automation products faster than ever.
  • 14
    Amazon Monitron
    Detect machine issues before they occur with machine learning (ML), and take action. Start monitoring equipment in minutes with easy installation and automatic, secure analysis through the Amazon Monitron end-to-end system. Improve system accuracy continuously as Amazon Monitron learns from technician feedback entered in the mobile and web apps. Amazon Monitron is an end-to-end system that uses machine learning to detect abnormal conditions in industrial equipment and enable predictive maintenance. Save on costly repairs and prevent factory equipment downtime with easy-to-install hardware and the power of ML. Reduce unplanned equipment downtime with predictive maintenance and machine learning. Amazon Monitron uses machine learning on temperature and vibration data. Amazon Monitron can help you predict equipment downtime before it happens. Compare what it costs to get started with how much you could save.
  • 15
    Monitaur

    Monitaur

    Monitaur

    Creating responsible AI is a business problem, not just a tech problem. We solve for the whole problem by bringing teams together onto one platform to mitigate risk, leverage your full potential, and turn intention into action. Uniting every stage of your AI/ML journey with cloud-based governance applications. GovernML is the kickstarter you need to bring good AI/ML systems into the world. We bring user-friendly workflows that document the lifecycle of your AI journey on one platform. That’s good news for your risk mitigation and your bottom line. Monitaur provides cloud-based governance applications that track your AI/ML models from policy to proof. We are SOC 2 Type II-certified to enhance your AI governance and deliver bespoke solutions on a single unifying platform. GovernML brings responsible AI/ML systems into the world. Get scalable, user-friendly workflows that document the lifecycle of your AI journey on one platform.
  • 16
    Cerebrium

    Cerebrium

    Cerebrium

    Deploy all major ML frameworks such as Pytorch, Onnx, XGBoost etc with 1 line of code. Don't have your own models? Deploy our prebuilt models that have been optimised to run with sub-second latency. Fine-tune smaller models on particular tasks in order to decrease costs and latency while increasing performance. It takes just a few lines of code and don't worry about infrastructure, we got it. Integrate with top ML observability platforms in order to be alerted about feature or prediction drift, compare model versions and resolve issues quickly. Discover the root causes for prediction and feature drift to resolve degraded model performance. Understand which features are contributing most to the performance of your model.
    Starting Price: $ 0.00055 per second
  • 17
    Amazon SageMaker Debugger
    Optimize ML models by capturing training metrics in real-time and sending alerts when anomalies are detected. Automatically stop training processes when the desired accuracy is achieved to reduce the time and cost of training ML models. Automatically profile and monitor system resource utilization and send alerts when resource bottlenecks are identified to continuously improve resource utilization. Amazon SageMaker Debugger can reduce troubleshooting during training from days to minutes by automatically detecting and alerting you to remediate common training errors such as gradient values becoming too large or too small. Alerts can be viewed in Amazon SageMaker Studio or configured through Amazon CloudWatch. Additionally, the SageMaker Debugger SDK enables you to automatically detect new classes of model-specific errors such as data sampling, hyperparameter values, and out-of-bound values.
  • 18
    Amazon SageMaker Model Training
    Amazon SageMaker Model Training reduces the time and cost to train and tune machine learning (ML) models at scale without the need to manage infrastructure. You can take advantage of the highest-performing ML compute infrastructure currently available, and SageMaker can automatically scale infrastructure up or down, from one to thousands of GPUs. Since you pay only for what you use, you can manage your training costs more effectively. To train deep learning models faster, SageMaker distributed training libraries can automatically split large models and training datasets across AWS GPU instances, or you can use third-party libraries, such as DeepSpeed, Horovod, or Megatron. Efficiently manage system resources with a wide choice of GPUs and CPUs including P4d.24xl instances, which are the fastest training instances currently available in the cloud. Specify the location of data, indicate the type of SageMaker instances, and get started with a single click.
  • 19
    Amazon SageMaker Model Building
    Amazon SageMaker provides all the tools and libraries you need to build ML models, the process of iteratively trying different algorithms and evaluating their accuracy to find the best one for your use case. In Amazon SageMaker you can pick different algorithms, including over 15 that are built-in and optimized for SageMaker, and use over 150 pre-built models from popular model zoos available with a few clicks. SageMaker also offers a variety of model-building tools including Amazon SageMaker Studio Notebooks and RStudio where you can run ML models on a small scale to see results and view reports on their performance so you can come up with high-quality working prototypes. Amazon SageMaker Studio Notebooks help you build ML models faster and collaborate with your team. Amazon SageMaker Studio notebooks provide one-click Jupyter notebooks that you can start working within seconds. Amazon SageMaker also enables one-click sharing of notebooks.
  • 20
    Amazon SageMaker Studio
    Amazon SageMaker Studio is an integrated development environment (IDE) that provides a single web-based visual interface where you can access purpose-built tools to perform all machine learning (ML) development steps, from preparing data to building, training, and deploying your ML models, improving data science team productivity by up to 10x. You can quickly upload data, create new notebooks, train and tune models, move back and forth between steps to adjust experiments, collaborate seamlessly within your organization, and deploy models to production without leaving SageMaker Studio. Perform all ML development steps, from preparing raw data to deploying and monitoring ML models, with access to the most comprehensive set of tools in a single web-based visual interface. Amazon SageMaker Unified Studio is a comprehensive, AI and data development environment designed to streamline workflows and simplify the process of building and deploying machine learning models.
  • 21
    Amazon SageMaker Studio Lab
    Amazon SageMaker Studio Lab is a free machine learning (ML) development environment that provides the compute, storage (up to 15GB), and security, all at no cost, for anyone to learn and experiment with ML. All you need to get started is a valid email address, you don’t need to configure infrastructure or manage identity and access or even sign up for an AWS account. SageMaker Studio Lab accelerates model building through GitHub integration, and it comes preconfigured with the most popular ML tools, frameworks, and libraries to get you started immediately. SageMaker Studio Lab automatically saves your work so you don’t need to restart in between sessions. It’s as easy as closing your laptop and coming back later. Free machine learning development environment that provides the computing, storage, and security to learn and experiment with ML. GitHub integration and preconfigured with the most popular ML tools, frameworks, and libraries so you can get started immediately.
  • 22
    Amazon SageMaker Feature Store
    Amazon SageMaker Feature Store is a fully managed, purpose-built repository to store, share, and manage features for machine learning (ML) models. Features are inputs to ML models used during training and inference. For example, in an application that recommends a music playlist, features could include song ratings, listening duration, and listener demographics. Features are used repeatedly by multiple teams and feature quality is critical to ensure a highly accurate model. Also, when features used to train models offline in batch are made available for real-time inference, it’s hard to keep the two feature stores synchronized. SageMaker Feature Store provides a secured and unified store for feature use across the ML lifecycle. Store, share, and manage ML model features for training and inference to promote feature reuse across ML applications. Ingest features from any data source including streaming and batch such as application logs, service logs, clickstreams, sensors, etc.
  • 23
    Amazon SageMaker Data Wrangler
    Amazon SageMaker Data Wrangler reduces the time it takes to aggregate and prepare data for machine learning (ML) from weeks to minutes. With SageMaker Data Wrangler, you can simplify the process of data preparation and feature engineering, and complete each step of the data preparation workflow (including data selection, cleansing, exploration, visualization, and processing at scale) from a single visual interface. You can use SQL to select the data you want from a wide variety of data sources and import it quickly. Next, you can use the Data Quality and Insights report to automatically verify data quality and detect anomalies, such as duplicate rows and target leakage. SageMaker Data Wrangler contains over 300 built-in data transformations so you can quickly transform data without writing any code. Once you have completed your data preparation workflow, you can scale it to your full datasets using SageMaker data processing jobs; train, tune, and deploy models.
  • 24
    Amazon SageMaker Canvas
    Amazon SageMaker Canvas expands access to machine learning (ML) by providing business analysts with a visual interface that allows them to generate accurate ML predictions on their own, without requiring any ML experience or having to write a single line of code. Visual point-and-click interface to connect, prepare, analyze, and explore data for building ML models and generating accurate predictions. Automatically build ML models to run what-if analysis and generate single or bulk predictions with a few clicks. Boost collaboration between business analysts and data scientists by sharing, reviewing, and updating ML models across tools. Import ML models from anywhere and generate predictions directly in Amazon SageMaker Canvas. With Amazon SageMaker Canvas, you can import data from disparate sources, select values you want to predict, automatically prepare and explore data, and quickly and more easily build ML models. You can then analyze models and generate accurate predictions.
  • 25
    Amazon SageMaker Edge
    The SageMaker Edge Agent allows you to capture data and metadata based on triggers that you set so that you can retrain your existing models with real-world data or build new models. Additionally, this data can be used to conduct your own analysis, such as model drift analysis. We offer three options for deployment. GGv2 (~ size 100MB) is a fully integrated AWS IoT deployment mechanism. For those customers with a limited device capacity, we have a smaller built-in deployment mechanism within SageMaker Edge. For customers who have a preferred deployment mechanism, we support third party mechanisms that can be plugged into our user flow. Amazon SageMaker Edge Manager provides a dashboard so you can understand the performance of models running on each device across your fleet. The dashboard helps you visually understand overall fleet health and identify the problematic models through a dashboard in the console.
  • 26
    Amazon SageMaker Clarify
    Amazon SageMaker Clarify provides machine learning (ML) developers with purpose-built tools to gain greater insights into their ML training data and models. SageMaker Clarify detects and measures potential bias using a variety of metrics so that ML developers can address potential bias and explain model predictions. SageMaker Clarify can detect potential bias during data preparation, after model training, and in your deployed model. For instance, you can check for bias related to age in your dataset or in your trained model and receive a detailed report that quantifies different types of potential bias. SageMaker Clarify also includes feature importance scores that help you explain how your model makes predictions and produces explainability reports in bulk or real time through online explainability. You can use these reports to support customer or internal presentations or to identify potential issues with your model.
  • 27
    Amazon SageMaker JumpStart
    Amazon SageMaker JumpStart is a machine learning (ML) hub that can help you accelerate your ML journey. With SageMaker JumpStart, you can access built-in algorithms with pretrained models from model hubs, pretrained foundation models to help you perform tasks such as article summarization and image generation, and prebuilt solutions to solve common use cases. In addition, you can share ML artifacts, including ML models and notebooks, within your organization to accelerate ML model building and deployment. SageMaker JumpStart provides hundreds of built-in algorithms with pretrained models from model hubs, including TensorFlow Hub, PyTorch Hub, HuggingFace, and MxNet GluonCV. You can also access built-in algorithms using the SageMaker Python SDK. Built-in algorithms cover common ML tasks, such as data classifications (image, text, tabular) and sentiment analysis.
  • 28
    Amazon SageMaker Autopilot
    Amazon SageMaker Autopilot eliminates the heavy lifting of building ML models. You simply provide a tabular dataset and select the target column to predict, and SageMaker Autopilot will automatically explore different solutions to find the best model. You then can directly deploy the model to production with just one click or iterate on the recommended solutions to further improve the model quality. You can use Amazon SageMaker Autopilot even when you have missing data. SageMaker Autopilot automatically fills in the missing data, provides statistical insights about columns in your dataset, and automatically extracts information from non-numeric columns, such as date and time information from timestamps.
  • 29
    Amazon SageMaker Model Monitor
    With Amazon SageMaker Model Monitor, you can select the data you would like to monitor and analyze without the need to write any code. SageMaker Model Monitor lets you select data from a menu of options such as prediction output, and captures metadata such as timestamp, model name, and endpoint so you can analyze model predictions based on the metadata. You can specify the sampling rate of data capture as a percentage of overall traffic in the case of high volume real-time predictions, and the data is stored in your own Amazon S3 bucket. You can also encrypt this data, configure fine-grained security, define data retention policies, and implement access control mechanisms for secure access. Amazon SageMaker Model Monitor offers built-in analysis in the form of statistical rules, to detect drifts in data and model quality. You can also write custom rules and specify thresholds for each rule.
  • 30
    Amazon SageMaker Pipelines
    Using Amazon SageMaker Pipelines, you can create ML workflows with an easy-to-use Python SDK, and then visualize and manage your workflow using Amazon SageMaker Studio. You can be more efficient and scale faster by storing and reusing the workflow steps you create in SageMaker Pipelines. You can also get started quickly with built-in templates to build, test, register, and deploy models so you can get started with CI/CD in your ML environment quickly. Many customers have hundreds of workflows, each with a different version of the same model. With the SageMaker Pipelines model registry, you can track these versions in a central repository where it is easy to choose the right model for deployment based on your business requirements. You can use SageMaker Studio to browse and discover models, or you can access them through the SageMaker Python SDK.