Best Machine Learning Software - Page 13

Compare the Top Machine Learning Software as of August 2025 - Page 13

  • 1
    Hive AutoML
    Build and deploy deep learning models for custom use cases. Our automated machine learning process allows customers to create powerful AI solutions built on our best-in-class models and tailored to the specific challenges they face. Digital platforms can quickly create models specifically made to fit their guidelines and needs. Build large language models for specialized use cases such as customer and technical support bots. Create image classification models to better understand image libraries for search, organization, and more.
  • 2
    Eternity AI

    Eternity AI

    Eternity AI

    Eternity AI is building an HTLM-7B, a machine learning model that knows what the internet is and how to access it to generate responses. Humans don't make decisions based on 2-year-old data. For a model to think like a human, it needs to get access to real-time knowledge and everything about how humans behave. Members of our team have previously published white papers and articles on topics related to on-chain vulnerability coordination, GPT database retrieval, decentralized dispute resolution, etc.
  • 3
    Adept

    Adept

    Adept

    Adept is an ML research and product lab building general intelligence by enabling humans and computers to work together creatively. Designed and trained specifically for taking actions on computers in response to your natural language commands. ACT-1 is our first step towards a foundation model that can use every software tool, API and website that exists. Adept is building an entirely new way to get things done. It takes your goals, in plain language, and turns them into actions on the software you use every day. We believe that AI systems should be built with users at the center — where machines work together with people in the driver's seat, discovering new solutions, enabling more informed decisions, and giving us more time for the work we love.
  • 4
    3LC

    3LC

    3LC

    Light up the black box and pip install 3LC to gain the clarity you need to make meaningful changes to your models in moments. Remove the guesswork from your model training and iterate fast. Collect per-sample metrics and visualize them in your browser. Analyze your training and eliminate issues in your dataset. Model-guided, interactive data debugging and enhancements. Find important or inefficient samples. Understand what samples work and where your model struggles. Improve your model in different ways by weighting your data. Make sparse, non-destructive edits to individual samples or in a batch. Maintain a lineage of all changes and restore any previous revisions. Dive deeper than standard experiment trackers with per-sample per epoch metrics and data tracking. Aggregate metrics by sample features, rather than just epoch, to spot hidden trends. Tie each training run to a specific dataset revision for full reproducibility.
  • 5
    Ensemble Dark Matter
    Train accurate ML models on limited, sparse, and high-dimensional data without extensive feature engineering by creating statistically optimized representations of your data. By learning how to extract and represent complex relationships in your existing data, Dark Matter improves model performance and speeds up training without extensive feature engineering or resource-intensive deep learning, enabling data scientists to spend less time on data and more time-solving hard problems. Dark Matter significantly improved model precision and f1 scores in predicting customer conversion in the online retail space. Model performance metrics improved across the board when trained on an optimized embedding learned from a sparse, high-dimensional data set. Training XGBoost on a better representation of the data improved predictions of customer churn in the banking industry. Enhance your pipeline, no matter your model or domain.
  • 6
    Simplismart

    Simplismart

    Simplismart

    Fine-tune and deploy AI models with Simplismart's fastest inference engine. Integrate with AWS/Azure/GCP and many more cloud providers for simple, scalable, cost-effective deployment. Import open source models from popular online repositories or deploy your own custom model. Leverage your own cloud resources or let Simplismart host your model. With Simplismart, you can go far beyond AI model deployment. You can train, deploy, and observe any ML model and realize increased inference speeds at lower costs. Import any dataset and fine-tune open-source or custom models rapidly. Run multiple training experiments in parallel efficiently to speed up your workflow. Deploy any model on our endpoints or your own VPC/premise and see greater performance at lower costs. Streamlined and intuitive deployment is now a reality. Monitor GPU utilization and all your node clusters in one dashboard. Detect any resource constraints and model inefficiencies on the go.
  • 7
    Invert

    Invert

    Invert

    Invert offers a complete suite for collecting, cleaning, and contextualizing data, ensuring every analysis and insight is based on reliable, organized data. Invert collects and standardizes all your bioprocess data, with powerful, built-in products for analysis, machine learning, and modeling. Clean, standardized data is just the beginning. Explore our suite of data management, analysis, and modeling tools. Replace manual workflows in spreadsheets or statistical software. Calculate anything using powerful statistical features. Automatically generate reports based on recent runs. Add interactive plots, calculations, and comments and share with internal or external collaborators. Streamline planning, coordination, and execution of experiments. Easily find the data you need, and deep dive into any analysis you'd like. From integration to analysis to modeling, find all the tools you need to manage and make sense of your data.
  • 8
    AI Verse

    AI Verse

    AI Verse

    When real-life data capture is challenging, we generate diverse, fully labeled image datasets. Our procedural technology ensures the highest quality, unbiased, labeled synthetic datasets that will improve your computer vision model’s accuracy. AI Verse empowers users with full control over scene parameters, ensuring you can fine-tune the environments for unlimited image generation, giving you an edge in the competitive landscape of computer vision development.
  • 9
    SquareML

    SquareML

    SquareML

    SquareML is a no-code machine learning platform designed to democratize access to advanced data analytics and predictive modeling, particularly in the healthcare sector. It enables users, regardless of technical expertise, to harness machine learning capabilities without extensive coding knowledge. The platform specializes in data ingestion from multiple sources, including electronic health records, claims databases, medical devices, and health information exchanges. Key features include a no-code data science lifecycle, generative AI models for healthcare, unstructured data conversion, diverse machine learning models for predicting patient outcomes and disease progression, a library of pre-built models and algorithms, and seamless integration with various healthcare data sources. SquareML aims to streamline data processes, enhance diagnostic accuracy, and improve patient care outcomes by providing AI-powered insights.
  • 10
    Amazon EC2 Capacity Blocks for ML
    Amazon EC2 Capacity Blocks for ML enable you to reserve accelerated compute instances in Amazon EC2 UltraClusters for your machine learning workloads. This service supports Amazon EC2 P5en, P5e, P5, and P4d instances, powered by NVIDIA H200, H100, and A100 Tensor Core GPUs, respectively, as well as Trn2 and Trn1 instances powered by AWS Trainium. You can reserve these instances for up to six months in cluster sizes ranging from one to 64 instances (512 GPUs or 1,024 Trainium chips), providing flexibility for various ML workloads. Reservations can be made up to eight weeks in advance. By colocating in Amazon EC2 UltraClusters, Capacity Blocks offer low-latency, high-throughput network connectivity, facilitating efficient distributed training. This setup ensures predictable access to high-performance computing resources, allowing you to plan ML development confidently, run experiments, build prototypes, and accommodate future surges in demand for ML applications.
  • 11
    Amazon EC2 UltraClusters
    Amazon EC2 UltraClusters enable you to scale to thousands of GPUs or purpose-built machine learning accelerators, such as AWS Trainium, providing on-demand access to supercomputing-class performance. They democratize supercomputing for ML, generative AI, and high-performance computing developers through a simple pay-as-you-go model without setup or maintenance costs. UltraClusters consist of thousands of accelerated EC2 instances co-located in a given AWS Availability Zone, interconnected using Elastic Fabric Adapter (EFA) networking in a petabit-scale nonblocking network. This architecture offers high-performance networking and access to Amazon FSx for Lustre, a fully managed shared storage built on a high-performance parallel file system, enabling rapid processing of massive datasets with sub-millisecond latencies. EC2 UltraClusters provide scale-out capabilities for distributed ML training and tightly coupled HPC workloads, reducing training times.
  • 12
    Amazon EC2 Trn2 Instances
    Amazon EC2 Trn2 instances, powered by AWS Trainium2 chips, are purpose-built for high-performance deep learning training of generative AI models, including large language models and diffusion models. They offer up to 50% cost-to-train savings over comparable Amazon EC2 instances. Trn2 instances support up to 16 Trainium2 accelerators, providing up to 3 petaflops of FP16/BF16 compute power and 512 GB of high-bandwidth memory. To facilitate efficient data and model parallelism, Trn2 instances feature NeuronLink, a high-speed, nonblocking interconnect, and support up to 1600 Gbps of second-generation Elastic Fabric Adapter (EFAv2) network bandwidth. They are deployed in EC2 UltraClusters, enabling scaling up to 30,000 Trainium2 chips interconnected with a nonblocking petabit-scale network, delivering 6 exaflops of compute performance. The AWS Neuron SDK integrates natively with popular machine learning frameworks like PyTorch and TensorFlow.
  • 13
    AWS Elastic Fabric Adapter (EFA)
    Elastic Fabric Adapter (EFA) is a network interface for Amazon EC2 instances that enables customers to run applications requiring high levels of inter-node communications at scale on AWS. Its custom-built operating system (OS) bypass hardware interface enhances the performance of inter-instance communications, which is critical to scaling these applications. With EFA, High-Performance Computing (HPC) applications using the Message Passing Interface (MPI) and Machine Learning (ML) applications using NVIDIA Collective Communications Library (NCCL) can scale to thousands of CPUs or GPUs. As a result, you get the application performance of on-premises HPC clusters with the on-demand elasticity and flexibility of the AWS cloud. EFA is available as an optional EC2 networking feature that you can enable on any supported EC2 instance at no additional cost. Plus, it works with the most commonly used interfaces, APIs, and libraries for inter-node communications.
  • 14
    MLBox

    MLBox

    Axel ARONIO DE ROMBLAY

    MLBox is a powerful Automated Machine Learning python library. It provides the following features fast reading and distributed data preprocessing/cleaning/formatting, highly robust feature selection and leak detection, accurate hyper-parameter optimization in high-dimensional space, state-of-the art predictive models for classification and regression (Deep Learning, Stacking, LightGBM), and prediction with models interpretation. MLBox main package contains 3 sub-packages: preprocessing, optimization and prediction. Each one of them are respectively aimed at reading and preprocessing data, testing or optimizing a wide range of learners and predicting the target on a test dataset.
  • 15
    Ludwig

    Ludwig

    Uber AI

    Ludwig is a low-code framework for building custom AI models like LLMs and other deep neural networks. Build custom models with ease: a declarative YAML configuration file is all you need to train a state-of-the-art LLM on your data. Support for multi-task and multi-modality learning. Comprehensive config validation detects invalid parameter combinations and prevents runtime failures. Optimized for scale and efficiency: automatic batch size selection, distributed training (DDP, DeepSpeed), parameter efficient fine-tuning (PEFT), 4-bit quantization (QLoRA), and larger-than-memory datasets. Expert level control: retain full control of your models down to the activation functions. Support for hyperparameter optimization, explainability, and rich metric visualizations. Modular and extensible: experiment with different model architectures, tasks, features, and modalities with just a few parameter changes in the config. Think building blocks for deep learning.
  • 16
    AutoKeras

    AutoKeras

    AutoKeras

    An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras is to make machine learning accessible to everyone. AutoKeras supports several tasks with an extremely simple interface.
  • 17
    MLlib

    MLlib

    Apache Software Foundation

    ​Apache Spark's MLlib is a scalable machine learning library that integrates seamlessly with Spark's APIs, supporting Java, Scala, Python, and R. It offers a comprehensive suite of algorithms and utilities, including classification, regression, clustering, collaborative filtering, and tools for constructing machine learning pipelines. MLlib's high-quality algorithms leverage Spark's iterative computation capabilities, delivering performance up to 100 times faster than traditional MapReduce implementations. It is designed to operate across diverse environments, running on Hadoop, Apache Mesos, Kubernetes, standalone clusters, or in the cloud, and accessing various data sources such as HDFS, HBase, and local files. This flexibility makes MLlib a robust solution for scalable and efficient machine learning tasks within the Apache Spark ecosystem. ​
  • 18
    Volcano Engine

    Volcano Engine

    Volcano Engine

    Volcengine is ByteDance’s cloud platform delivering a full spectrum of IaaS, PaaS, and AI services under its Volcano Ark ecosystem through global, multi‑region infrastructure. It provides elastic compute instances (CPU, GPU, and TPU), high‑performance block and object storage, virtual networking, and managed databases, all designed for seamless scalability and pay‑as‑you‑go flexibility. Integrated AI capabilities offer natural language processing, computer vision, and speech recognition via prebuilt models or custom training pipelines, while a content delivery network and Engine VE SDK enable adaptive‑bitrate streaming, low‑latency media delivery, and real‑time AR/VR rendering. The platform’s security framework includes end‑to‑end encryption, fine‑grained access control, and automated threat detection, backed by compliance certifications.
  • 19
    evoML

    evoML

    TurinTech AI

    evoML accelerates the creation of production-quality machine learning models by streamlining and automating the end-to-end data science workflow, transforming raw data into actionable insights in days instead of weeks. It automates crucial steps, automatic data transformation that detects anomalies and handles imbalances, feature engineering via genetic algorithms, parallel model evaluation across thousands of candidates, multi-objective optimization on custom metrics, and GenAI-based synthetic data generation for rapid prototyping under data-privacy constraints. Users fully own and customize generated model code for seamless deployment as APIs, databases, or local libraries, avoiding vendor lock-in and ensuring transparent, auditable workflows. EvoML empowers teams with intuitive visualizations, interactive dashboards, and charts to identify patterns, outliers, and anomalies for use cases such as anomaly detection, time-series forecasting, and fraud prevention.
  • 20
    Velocidi

    Velocidi

    Velocidi

    Velocidi is a first-party audience solution for e-commerce marketers. Brands and their agencies use Velocidi to automatically build and segment their first-party audiences for strategic marketing on major platforms. Velocidi’s award-winning technology uses machine learning to predict customer behavior and create highly precise segments for campaigns that maximize revenue and accelerate growth.
  • 21
    H2O.ai

    H2O.ai

    H2O.ai

    H2O.ai is the open source leader in AI and machine learning with a mission to democratize AI for everyone. Our industry-leading enterprise-ready platforms are used by hundreds of thousands of data scientists in over 20,000 organizations globally. We empower every company to be an AI company in financial services, insurance, healthcare, telco, retail, pharmaceutical, and marketing and delivering real value and transforming businesses today.
  • 22
    Cloudera

    Cloudera

    Cloudera

    Manage and secure the data lifecycle from the Edge to AI in any cloud or data center. Operates across all major public clouds and the private cloud with a public cloud experience everywhere. Integrates data management and analytic experiences across the data lifecycle for data anywhere. Delivers security, compliance, migration, and metadata management across all environments. Open source, open integrations, extensible, & open to multiple data stores and compute architectures. Deliver easier, faster, and safer self-service analytics experiences. Provide self-service access to integrated, multi-function analytics on centrally managed and secured business data while deploying a consistent experience anywhere—on premises or in hybrid and multi-cloud. Enjoy consistent data security, governance, lineage, and control, while deploying the powerful, easy-to-use cloud analytics experiences business users require and eliminating their need for shadow IT solutions.
  • 23
    DeepNLP

    DeepNLP

    SparkCognition

    SparkCognition, a leading industrial AI company, has developed a natural language processing solution that automates workflows of unstructured data within organizations so humans can focus on high-value business decisions. The DeepNLP product uses advanced machine learning techniques to automate the retrieval of information, the classification of documents, and content analytics. The DeepNLP product integrates into existing workflows to enable organizations to better respond to changes in their business and quickly get answers to specific queries or analytics that support decision-making.
  • 24
    OpenText Magellan
    Machine Learning and Predictive Analytics Platform. Augment data-driven decision making and accelerate business with advanced artificial intelligence in a pre-built machine learning and big data analytics platform. OpenText Magellan uses AI technologies to provide predictive analytics in easy to consume and flexible data visualizations that maximize the value of business intelligence. Artificial intelligence software eliminates the need for manual big data processing by presenting valuable business insights in a way that is accessible and related to the most critical objectives of the organization. By augmenting business processes through a curated mix of capabilities, including predictive modeling, data discovery tools, data mining techniques, IoT data analytics and more, organizations can use their data to improve decision making based on real business intelligence and analytics.
  • 25
    Craft AI

    Craft AI

    Craft AI

    Our comprehensive proprietary software suite easily integrates into your work streams. Our mission is to make the use of artificial intelligence more accessible to all businesses to ethically and responsibly address their practical needs in record time. Our industry experts will help you define a 15 weeks action plan to build an AI application that meets your challenges.
  • 26
    Paradise

    Paradise

    Geophysical Insights

    Paradise uses robust, unsupervised machine learning and supervised deep learning technologies to accelerate interpretation and generate greater insights from the data. Generate attributes to extract meaningful geological information and as input into machine learning analysis. Identify attributes having the highest variance and contribution among a set of attributes in a geologic setting, Display the neural classes (topology) and their associated colors resulting from Stratigraphic Analysis that indicate the distribution of facies. Detect faults automatically with deep learning and machine learning processes. Compare machine learning classification results and other seismic attributes to traditional good logs. Generate geometric and spectral decomposition attributes on a cluster of compute nodes in a fraction of the time on a single machine.
  • 27
    Reveelium

    Reveelium

    ITrust.fr

    3 out of 4 companies are subject to computer attacks or hacking. However, 90% are equipped with essential security equipment that does not detect these malicious attacks. APTs, malicious behaviors, viruses, crypto lockers, override existing security defenses and no current tool can detect these attacks. Yet these attacks leave footprints of their passage. Finding these malicious traces on a large amount of data and exploiting these signals is impossible with current tools. Reveelium correlates and aggregates all types of logs from an information system and detects attacks or malicious activity in progress. An essential tool in the fight against cyber-malware Reveelium SIEM can be used alone or complemented by Ikare, Reveelium UEBA or ITrust’s Acsia EDR, to provide a true next-generation security center (SOC). Have the practices of its teams monitored by a third party and obtain an objective opinion on its level of safety.
  • 28
    Morressier

    Morressier

    Morressier

    Morressier provides professional and academic organizations with comprehensive virtual and hybrid conference solutions, powerful data and analytics, and new revenue opportunities. Since 2014, more than 200 societies, institutions, and corporations around the world trust Morressier to support their meetings, engage their users, and amplify their research. Partners use Morressier’s powerful suite of tools and custom integrations to host, share, and fully integrate traditionally hidden conference content, including abstracts, posters, presentations, video, and datasets. At the same time, by increasing the dissemination of this early-stage research and providing valuable aggregate insights, Morressier facilitates scholarly discourse and accelerates scientific breakthroughs.
  • 29
    Skytree

    Skytree

    Skytree

    Sky Tree is the primary source for many clients to obtain the best software for their business. And this is because we are the leader when it comes to a competitively price in each of our product as well as a good guarantee with each purchase of our software. But since most small companies and business are only aware of the potential of our software but they aren’t quite sure on how to use it and maximize their potential to increase the performance of their business. We are glad to serve each of our products with simple instructions so they can understand how to take advantage the most of each product. Sky Tree focuses only on delivering the best software available in the market. For that, we are always testing and checking our products with extreme care, and we can realize how to take full potential of each of our software and what is the best appliance.
  • 30
    Salford Predictive Modeler (SPM)
    The Salford Predictive Modeler® (SPM) software suite is a highly accurate and ultra-fast platform for developing predictive, descriptive, and analytical models. The Salford Predictive Modeler® software suite includes the CART®, MARS®, TreeNet®, Random Forests® engines, as well as powerful new automation and modeling capabilities not found elsewhere. The SPM software suite’s data mining technologies span classification, regression, survival analysis, missing value analysis, data binning and clustering/segmentation. SPM algorithms are considered to be essential in sophisticated data science circles. The SPM software suite‘s automation accelerates the process of model building by conducting substantial portions of the model exploration and refinement process for the analyst. We package a complete set of results from alternative modeling strategies for easy review.