Compare the Top LLM Evaluation Tools that integrate with TensorFlow as of September 2025

This a list of LLM Evaluation tools that integrate with TensorFlow. Use the filters on the left to add additional filters for products that have integrations with TensorFlow. View the products that work with TensorFlow in the table below.

What are LLM Evaluation Tools for TensorFlow?

LLM (Large Language Model) evaluation tools are designed to assess the performance and accuracy of AI language models. These tools analyze various aspects, such as the model's ability to generate relevant, coherent, and contextually accurate responses. They often include metrics for measuring language fluency, factual correctness, bias, and ethical considerations. By providing detailed feedback, LLM evaluation tools help developers improve model quality, ensure alignment with user expectations, and address potential issues. Ultimately, these tools are essential for refining AI models to make them more reliable, safe, and effective for real-world applications. Compare and read user reviews of the best LLM Evaluation tools for TensorFlow currently available using the table below. This list is updated regularly.

  • 1
    Vertex AI
    LLM Evaluation in Vertex AI focuses on assessing the performance of large language models to ensure their effectiveness across various natural language processing tasks. Vertex AI provides tools for evaluating LLMs in tasks like text generation, question-answering, and language translation, allowing businesses to fine-tune models for better accuracy and relevance. By evaluating these models, businesses can optimize their AI solutions and ensure they meet specific application needs. New customers receive $300 in free credits to explore the evaluation process and test large language models in their own environment. This functionality enables businesses to enhance the performance of LLMs and integrate them into their applications with confidence.
    Starting Price: Free ($300 in free credits)
    View Tool
    Visit Website
  • 2
    Comet

    Comet

    Comet

    Manage and optimize models across the entire ML lifecycle, from experiment tracking to monitoring models in production. Achieve your goals faster with the platform built to meet the intense demands of enterprise teams deploying ML at scale. Supports your deployment strategy whether it’s private cloud, on-premise servers, or hybrid. Add two lines of code to your notebook or script and start tracking your experiments. Works wherever you run your code, with any machine learning library, and for any machine learning task. Easily compare experiments—code, hyperparameters, metrics, predictions, dependencies, system metrics, and more—to understand differences in model performance. Monitor your models during every step from training to production. Get alerts when something is amiss, and debug your models to address the issue. Increase productivity, collaboration, and visibility across all teams and stakeholders.
    Starting Price: $179 per user per month
  • 3
    Label Studio

    Label Studio

    Label Studio

    The most flexible data annotation tool. Quickly installable. Build custom UIs or use pre-built labeling templates. Configurable layouts and templates adapt to your dataset and workflow. Detect objects on images, boxes, polygons, circular, and key points supported. Partition the image into multiple segments. Use ML models to pre-label and optimize the process. Webhooks, Python SDK, and API allow you to authenticate, create projects, import tasks, manage model predictions, and more. Save time by using predictions to assist your labeling process with ML backend integration. Connect to cloud object storage and label data there directly with S3 and GCP. Prepare and manage your dataset in our Data Manager using advanced filters. Support multiple projects, use cases, and data types in one platform. Start typing in the config, and you can quickly preview the labeling interface. At the bottom of the page, you have live serialization updates of what Label Studio expects as an input.
  • 4
    RagaAI

    RagaAI

    RagaAI

    RagaAI is the #1 AI testing platform that helps enterprises mitigate AI risks and make their models secure and reliable. Reduce AI risk exposure across cloud or edge deployments and optimize MLOps costs with intelligent recommendations. A foundation model specifically designed to revolutionize AI testing. Easily identify the next steps to fix dataset and model issues. The AI-testing methods used by most today increase the time commitment and reduce productivity while building models. Also, they leave unforeseen risks, so they perform poorly post-deployment and thus waste both time and money for the business. We have built an end-to-end AI testing platform that helps enterprises drastically improve their AI development pipeline and prevent inefficiencies and risks post-deployment. 300+ tests to identify and fix every model, data, and operational issue, and accelerate AI development with comprehensive testing.
  • 5
    DagsHub

    DagsHub

    DagsHub

    DagsHub is a collaborative platform designed for data scientists and machine learning engineers to manage and streamline their projects. It integrates code, data, experiments, and models into a unified environment, facilitating efficient project management and team collaboration. Key features include dataset management, experiment tracking, model registry, and data and model lineage, all accessible through a user-friendly interface. DagsHub supports seamless integration with popular MLOps tools, allowing users to leverage their existing workflows. By providing a centralized hub for all project components, DagsHub enhances transparency, reproducibility, and efficiency in machine learning development. DagsHub is a platform for AI and ML developers that lets you manage and collaborate on your data, models, and experiments, alongside your code. DagsHub was particularly designed for unstructured data for example text, images, audio, medical imaging, and binary files.
    Starting Price: $9 per month
  • 6
    Weights & Biases

    Weights & Biases

    Weights & Biases

    Experiment tracking, hyperparameter optimization, model and dataset versioning with Weights & Biases (WandB). Track, compare, and visualize ML experiments with 5 lines of code. Add a few lines to your script, and each time you train a new version of your model, you'll see a new experiment stream live to your dashboard. Optimize models with our massively scalable hyperparameter search tool. Sweeps are lightweight, fast to set up, and plug in to your existing infrastructure for running models. Save every detail of your end-to-end machine learning pipeline — data preparation, data versioning, training, and evaluation. It's never been easier to share project updates. Quickly and easily implement experiment logging by adding just a few lines to your script and start logging results. Our lightweight integration works with any Python script. W&B Weave is here to help developers build and iterate on their AI applications with confidence.
  • 7
    MLflow

    MLflow

    MLflow

    MLflow is an open source platform to manage the ML lifecycle, including experimentation, reproducibility, deployment, and a central model registry. MLflow currently offers four components. Record and query experiments: code, data, config, and results. Package data science code in a format to reproduce runs on any platform. Deploy machine learning models in diverse serving environments. Store, annotate, discover, and manage models in a central repository. The MLflow Tracking component is an API and UI for logging parameters, code versions, metrics, and output files when running your machine learning code and for later visualizing the results. MLflow Tracking lets you log and query experiments using Python, REST, R API, and Java API APIs. An MLflow Project is a format for packaging data science code in a reusable and reproducible way, based primarily on conventions. In addition, the Projects component includes an API and command-line tools for running projects.
  • Previous
  • You're on page 1
  • Next