Compare the Top LLM Evaluation Tools that integrate with Python as of June 2025

This a list of LLM Evaluation tools that integrate with Python. Use the filters on the left to add additional filters for products that have integrations with Python. View the products that work with Python in the table below.

What are LLM Evaluation Tools for Python?

LLM (Large Language Model) evaluation tools are designed to assess the performance and accuracy of AI language models. These tools analyze various aspects, such as the model's ability to generate relevant, coherent, and contextually accurate responses. They often include metrics for measuring language fluency, factual correctness, bias, and ethical considerations. By providing detailed feedback, LLM evaluation tools help developers improve model quality, ensure alignment with user expectations, and address potential issues. Ultimately, these tools are essential for refining AI models to make them more reliable, safe, and effective for real-world applications. Compare and read user reviews of the best LLM Evaluation tools for Python currently available using the table below. This list is updated regularly.

  • 1
    Vertex AI
    LLM Evaluation in Vertex AI focuses on assessing the performance of large language models to ensure their effectiveness across various natural language processing tasks. Vertex AI provides tools for evaluating LLMs in tasks like text generation, question-answering, and language translation, allowing businesses to fine-tune models for better accuracy and relevance. By evaluating these models, businesses can optimize their AI solutions and ensure they meet specific application needs. New customers receive $300 in free credits to explore the evaluation process and test large language models in their own environment. This functionality enables businesses to enhance the performance of LLMs and integrate them into their applications with confidence.
    Starting Price: Free ($300 in free credits)
    View Tool
    Visit Website
  • 2
    Comet

    Comet

    Comet

    Manage and optimize models across the entire ML lifecycle, from experiment tracking to monitoring models in production. Achieve your goals faster with the platform built to meet the intense demands of enterprise teams deploying ML at scale. Supports your deployment strategy whether it’s private cloud, on-premise servers, or hybrid. Add two lines of code to your notebook or script and start tracking your experiments. Works wherever you run your code, with any machine learning library, and for any machine learning task. Easily compare experiments—code, hyperparameters, metrics, predictions, dependencies, system metrics, and more—to understand differences in model performance. Monitor your models during every step from training to production. Get alerts when something is amiss, and debug your models to address the issue. Increase productivity, collaboration, and visibility across all teams and stakeholders.
    Starting Price: $179 per user per month
  • 3
    Athina AI

    Athina AI

    Athina AI

    Athina is a collaborative AI development platform that enables teams to build, test, and monitor AI applications efficiently. It offers features such as prompt management, evaluation tools, dataset handling, and observability, all designed to streamline the development of reliable AI systems. Athina supports integration with various models and services, including custom models, and ensures data privacy through fine-grained access controls and self-hosted deployment options. The platform is SOC-2 Type 2 compliant, providing a secure environment for AI development. Athina's user-friendly interface allows both technical and non-technical team members to collaborate effectively, accelerating the deployment of AI features.
    Starting Price: Free
  • 4
    OpenPipe

    OpenPipe

    OpenPipe

    OpenPipe provides fine-tuning for developers. Keep your datasets, models, and evaluations all in one place. Train new models with the click of a button. Automatically record LLM requests and responses. Create datasets from your captured data. Train multiple base models on the same dataset. We serve your model on our managed endpoints that scale to millions of requests. Write evaluations and compare model outputs side by side. Change a couple of lines of code, and you're good to go. Simply replace your Python or Javascript OpenAI SDK and add an OpenPipe API key. Make your data searchable with custom tags. Small specialized models cost much less to run than large multipurpose LLMs. Replace prompts with models in minutes, not weeks. Fine-tuned Mistral and Llama 2 models consistently outperform GPT-4-1106-Turbo, at a fraction of the cost. We're open-source, and so are many of the base models we use. Own your own weights when you fine-tune Mistral and Llama 2, and download them at any time.
    Starting Price: $1.20 per 1M tokens
  • 5
    Deepchecks

    Deepchecks

    Deepchecks

    Release high-quality LLM apps quickly without compromising on testing. Never be held back by the complex and subjective nature of LLM interactions. Generative AI produces subjective results. Knowing whether a generated text is good usually requires manual labor by a subject matter expert. If you’re working on an LLM app, you probably know that you can’t release it without addressing countless constraints and edge-cases. Hallucinations, incorrect answers, bias, deviation from policy, harmful content, and more need to be detected, explored, and mitigated before and after your app is live. Deepchecks’ solution enables you to automate the evaluation process, getting “estimated annotations” that you only override when you have to. Used by 1000+ companies, and integrated into 300+ open source projects, the core behind our LLM product is widely tested and robust. Validate machine learning models and data with minimal effort, in both the research and the production phases.
    Starting Price: $1,000 per month
  • 6
    TruLens

    TruLens

    TruLens

    TruLens is an open-source Python library designed to systematically evaluate and track Large Language Model (LLM) applications. It provides fine-grained instrumentation, feedback functions, and a user interface to compare and iterate on app versions, facilitating rapid development and improvement of LLM-based applications. Programmatic tools that assess the quality of inputs, outputs, and intermediate results from LLM applications, enabling scalable evaluation. Fine-grained, stack-agnostic instrumentation and comprehensive evaluations help identify failure modes and systematically iterate to improve applications. An easy-to-use interface that allows developers to compare different versions of their applications, facilitating informed decision-making and optimization. TruLens supports various use cases, including question-answering, summarization, retrieval-augmented generation, and agent-based applications.
    Starting Price: Free
  • 7
    Arize Phoenix
    Phoenix is an open-source observability library designed for experimentation, evaluation, and troubleshooting. It allows AI engineers and data scientists to quickly visualize their data, evaluate performance, track down issues, and export data to improve. Phoenix is built by Arize AI, the company behind the industry-leading AI observability platform, and a set of core contributors. Phoenix works with OpenTelemetry and OpenInference instrumentation. The main Phoenix package is arize-phoenix. We offer several helper packages for specific use cases. Our semantic layer is to add LLM telemetry to OpenTelemetry. Automatically instrumenting popular packages. Phoenix's open-source library supports tracing for AI applications, via manual instrumentation or through integrations with LlamaIndex, Langchain, OpenAI, and others. LLM tracing records the paths taken by requests as they propagate through multiple steps or components of an LLM application.
    Starting Price: Free
  • 8
    Traceloop

    Traceloop

    Traceloop

    Traceloop is a comprehensive observability platform designed to monitor, debug, and test the quality of outputs from Large Language Models (LLMs). It offers real-time alerts for unexpected output quality changes, execution tracing for every request, and the ability to gradually roll out changes to models and prompts. Developers can debug and re-run issues from production directly in their Integrated Development Environment (IDE). Traceloop integrates seamlessly with the OpenLLMetry SDK, supporting multiple programming languages including Python, JavaScript/TypeScript, Go, and Ruby. The platform provides a range of semantic, syntactic, safety, and structural metrics to assess LLM outputs, such as QA relevancy, faithfulness, text quality, grammar correctness, redundancy detection, focus assessment, text length, word count, PII detection, secret detection, toxicity detection, regex validation, SQL validation, JSON schema validation, and code validation.
    Starting Price: $59 per month
  • 9
    HoneyHive

    HoneyHive

    HoneyHive

    AI engineering doesn't have to be a black box. Get full visibility with tools for tracing, evaluation, prompt management, and more. HoneyHive is an AI observability and evaluation platform designed to assist teams in building reliable generative AI applications. It offers tools for evaluating, testing, and monitoring AI models, enabling engineers, product managers, and domain experts to collaborate effectively. Measure quality over large test suites to identify improvements and regressions with each iteration. Track usage, feedback, and quality at scale, facilitating the identification of issues and driving continuous improvements. HoneyHive supports integration with various model providers and frameworks, offering flexibility and scalability to meet diverse organizational needs. It is suitable for teams aiming to ensure the quality and performance of their AI agents, providing a unified platform for evaluation, monitoring, and prompt management.
  • 10
    DagsHub

    DagsHub

    DagsHub

    DagsHub is a collaborative platform designed for data scientists and machine learning engineers to manage and streamline their projects. It integrates code, data, experiments, and models into a unified environment, facilitating efficient project management and team collaboration. Key features include dataset management, experiment tracking, model registry, and data and model lineage, all accessible through a user-friendly interface. DagsHub supports seamless integration with popular MLOps tools, allowing users to leverage their existing workflows. By providing a centralized hub for all project components, DagsHub enhances transparency, reproducibility, and efficiency in machine learning development. DagsHub is a platform for AI and ML developers that lets you manage and collaborate on your data, models, and experiments, alongside your code. DagsHub was particularly designed for unstructured data for example text, images, audio, medical imaging, and binary files.
    Starting Price: $9 per month
  • 11
    Orq.ai

    Orq.ai

    Orq.ai

    Orq.ai is the #1 platform for software teams to operate agentic AI systems at scale. Optimize prompts, deploy use cases, and monitor performance, no blind spots, no vibe checks. Experiment with prompts and LLM configurations before moving to production. Evaluate agentic AI systems in offline environments. Roll out GenAI features to specific user groups with guardrails, data privacy safeguards, and advanced RAG pipelines. Visualize all events triggered by agents for fast debugging. Get granular control on cost, latency, and performance. Connect to your favorite AI models, or bring your own. Speed up your workflow with out-of-the-box components built for agentic AI systems. Manage core stages of the LLM app lifecycle in one central platform. Self-hosted or hybrid deployment with SOC 2 and GDPR compliance for enterprise security.
  • 12
    Literal AI

    Literal AI

    Literal AI

    Literal AI is a collaborative platform designed to assist engineering and product teams in developing production-grade Large Language Model (LLM) applications. It offers a suite of tools for observability, evaluation, and analytics, enabling efficient tracking, optimization, and integration of prompt versions. Key features include multimodal logging, encompassing vision, audio, and video, prompt management with versioning and AB testing capabilities, and a prompt playground for testing multiple LLM providers and configurations. Literal AI integrates seamlessly with various LLM providers and AI frameworks, such as OpenAI, LangChain, and LlamaIndex, and provides SDKs in Python and TypeScript for easy instrumentation of code. The platform also supports the creation of experiments against datasets, facilitating continuous improvement and preventing regressions in LLM applications.
  • 13
    Prompt flow

    Prompt flow

    Microsoft

    Prompt Flow is a suite of development tools designed to streamline the end-to-end development cycle of LLM-based AI applications, from ideation, prototyping, testing, and evaluation to production deployment and monitoring. It makes prompt engineering much easier and enables you to build LLM apps with production quality. With Prompt Flow, you can create flows that link LLMs, prompts, Python code, and other tools together in an executable workflow. It allows for debugging and iteration of flows, especially tracing interactions with LLMs with ease. You can evaluate your flows, calculate quality and performance metrics with larger datasets, and integrate the testing and evaluation into your CI/CD system to ensure quality. Deployment of flows to the serving platform of your choice or integration into your app’s code base is made easy. Additionally, collaboration with your team is facilitated by leveraging the cloud version of Prompt Flow in Azure AI.
  • Previous
  • You're on page 1
  • Next