Compare the Top LLM Evaluation Tools that integrate with OpenAI as of June 2025

This a list of LLM Evaluation tools that integrate with OpenAI. Use the filters on the left to add additional filters for products that have integrations with OpenAI. View the products that work with OpenAI in the table below.

What are LLM Evaluation Tools for OpenAI?

LLM (Large Language Model) evaluation tools are designed to assess the performance and accuracy of AI language models. These tools analyze various aspects, such as the model's ability to generate relevant, coherent, and contextually accurate responses. They often include metrics for measuring language fluency, factual correctness, bias, and ethical considerations. By providing detailed feedback, LLM evaluation tools help developers improve model quality, ensure alignment with user expectations, and address potential issues. Ultimately, these tools are essential for refining AI models to make them more reliable, safe, and effective for real-world applications. Compare and read user reviews of the best LLM Evaluation tools for OpenAI currently available using the table below. This list is updated regularly.

  • 1
    Langfuse

    Langfuse

    Langfuse

    Langfuse is an open source LLM engineering platform to help teams collaboratively debug, analyze and iterate on their LLM Applications. Observability: Instrument your app and start ingesting traces to Langfuse Langfuse UI: Inspect and debug complex logs and user sessions Prompts: Manage, version and deploy prompts from within Langfuse Analytics: Track metrics (LLM cost, latency, quality) and gain insights from dashboards & data exports Evals: Collect and calculate scores for your LLM completions Experiments: Track and test app behavior before deploying a new version Why Langfuse? - Open source - Model and framework agnostic - Built for production - Incrementally adoptable - start with a single LLM call or integration, then expand to full tracing of complex chains/agents - Use GET API to build downstream use cases and export data
    Starting Price: $29/month
  • 2
    Opik

    Opik

    Comet

    Confidently evaluate, test, and ship LLM applications with a suite of observability tools to calibrate language model outputs across your dev and production lifecycle. Log traces and spans, define and compute evaluation metrics, score LLM outputs, compare performance across app versions, and more. Record, sort, search, and understand each step your LLM app takes to generate a response. Manually annotate, view, and compare LLM responses in a user-friendly table. Log traces during development and in production. Run experiments with different prompts and evaluate against a test set. Choose and run pre-configured evaluation metrics or define your own with our convenient SDK library. Consult built-in LLM judges for complex issues like hallucination detection, factuality, and moderation. Establish reliable performance baselines with Opik's LLM unit tests, built on PyTest. Build comprehensive test suites to evaluate your entire LLM pipeline on every deployment.
    Starting Price: $39 per month
  • 3
    PromptLayer

    PromptLayer

    PromptLayer

    The first platform built for prompt engineers. Log OpenAI requests, search usage history, track performance, and visually manage prompt templates. manage Never forget that one good prompt. GPT in prod, done right. Trusted by over 1,000 engineers to version prompts and monitor API usage. Start using your prompts in production. To get started, create an account by clicking “log in” on PromptLayer. Once logged in, click the button to create an API key and save this in a secure location. After making your first few requests, you should be able to see them in the PromptLayer dashboard! You can use PromptLayer with LangChain. LangChain is a popular Python library aimed at assisting in the development of LLM applications. It provides a lot of helpful features like chains, agents, and memory. Right now, the primary way to access PromptLayer is through our Python wrapper library that can be installed with pip.
    Starting Price: Free
  • 4
    Klu

    Klu

    Klu

    Klu.ai is a Generative AI platform that simplifies the process of designing, deploying, and optimizing AI applications. Klu integrates with your preferred Large Language Models, incorporating data from varied sources, giving your applications unique context. Klu accelerates building applications using language models like Anthropic Claude, Azure OpenAI, GPT-4, and over 15 other models, allowing rapid prompt/model experimentation, data gathering and user feedback, and model fine-tuning while cost-effectively optimizing performance. Ship prompt generations, chat experiences, workflows, and autonomous workers in minutes. Klu provides SDKs and an API-first approach for all capabilities to enable developer productivity. Klu automatically provides abstractions for common LLM/GenAI use cases, including: LLM connectors, vector storage and retrieval, prompt templates, observability, and evaluation/testing tooling.
    Starting Price: $97
  • 5
    Athina AI

    Athina AI

    Athina AI

    Athina is a collaborative AI development platform that enables teams to build, test, and monitor AI applications efficiently. It offers features such as prompt management, evaluation tools, dataset handling, and observability, all designed to streamline the development of reliable AI systems. Athina supports integration with various models and services, including custom models, and ensures data privacy through fine-grained access controls and self-hosted deployment options. The platform is SOC-2 Type 2 compliant, providing a secure environment for AI development. Athina's user-friendly interface allows both technical and non-technical team members to collaborate effectively, accelerating the deployment of AI features.
    Starting Price: Free
  • 6
    OpenPipe

    OpenPipe

    OpenPipe

    OpenPipe provides fine-tuning for developers. Keep your datasets, models, and evaluations all in one place. Train new models with the click of a button. Automatically record LLM requests and responses. Create datasets from your captured data. Train multiple base models on the same dataset. We serve your model on our managed endpoints that scale to millions of requests. Write evaluations and compare model outputs side by side. Change a couple of lines of code, and you're good to go. Simply replace your Python or Javascript OpenAI SDK and add an OpenPipe API key. Make your data searchable with custom tags. Small specialized models cost much less to run than large multipurpose LLMs. Replace prompts with models in minutes, not weeks. Fine-tuned Mistral and Llama 2 models consistently outperform GPT-4-1106-Turbo, at a fraction of the cost. We're open-source, and so are many of the base models we use. Own your own weights when you fine-tune Mistral and Llama 2, and download them at any time.
    Starting Price: $1.20 per 1M tokens
  • 7
    Maxim

    Maxim

    Maxim

    Maxim is an agent simulation, evaluation, and observability platform that empowers modern AI teams to deploy agents with quality, reliability, and speed. Maxim's end-to-end evaluation and data management stack covers every stage of the AI lifecycle, from prompt engineering to pre & post release testing and observability, data-set creation & management, and fine-tuning. Use Maxim to simulate and test your multi-turn workflows on a wide variety of scenarios and across different user personas before taking your application to production. Features: Agent Simulation Agent Evaluation Prompt Playground Logging/Tracing Workflows Custom Evaluators- AI, Programmatic and Statistical Dataset Curation Human-in-the-loop Use Case: Simulate and test AI agents Evals for agentic workflows: pre and post-release Tracing and debugging multi-agent workflows Real-time alerts on performance and quality Creating robust datasets for evals and fine-tuning Human-in-the-loop workflows
    Starting Price: $29/seat/month
  • 8
    Arize Phoenix
    Phoenix is an open-source observability library designed for experimentation, evaluation, and troubleshooting. It allows AI engineers and data scientists to quickly visualize their data, evaluate performance, track down issues, and export data to improve. Phoenix is built by Arize AI, the company behind the industry-leading AI observability platform, and a set of core contributors. Phoenix works with OpenTelemetry and OpenInference instrumentation. The main Phoenix package is arize-phoenix. We offer several helper packages for specific use cases. Our semantic layer is to add LLM telemetry to OpenTelemetry. Automatically instrumenting popular packages. Phoenix's open-source library supports tracing for AI applications, via manual instrumentation or through integrations with LlamaIndex, Langchain, OpenAI, and others. LLM tracing records the paths taken by requests as they propagate through multiple steps or components of an LLM application.
    Starting Price: Free
  • 9
    Ragas

    Ragas

    Ragas

    Ragas is an open-source framework designed to test and evaluate Large Language Model (LLM) applications. It offers automatic metrics to assess performance and robustness, synthetic test data generation tailored to specific requirements, and workflows to ensure quality during development and production monitoring. Ragas integrates seamlessly with existing stacks, providing insights to enhance LLM applications. The platform is maintained by a team of passionate individuals leveraging cutting-edge research and pragmatic engineering practices to empower visionaries redefining LLM possibilities. Synthetically generate high-quality and diverse evaluation data customized for your requirements. Evaluate and ensure the quality of your LLM application in production. Use insights to improve your application. Automatic metrics that helps you understand the performance and robustness of your LLM application.
    Starting Price: Free
  • 10
    DeepEval

    DeepEval

    Confident AI

    DeepEval is a simple-to-use, open source LLM evaluation framework, for evaluating and testing large-language model systems. It is similar to Pytest but specialized for unit testing LLM outputs. DeepEval incorporates the latest research to evaluate LLM outputs based on metrics such as G-Eval, hallucination, answer relevancy, RAGAS, etc., which uses LLMs and various other NLP models that run locally on your machine for evaluation. Whether your application is implemented via RAG or fine-tuning, LangChain, or LlamaIndex, DeepEval has you covered. With it, you can easily determine the optimal hyperparameters to improve your RAG pipeline, prevent prompt drifting, or even transition from OpenAI to hosting your own Llama2 with confidence. The framework supports synthetic dataset generation with advanced evolution techniques and integrates seamlessly with popular frameworks, allowing for efficient benchmarking and optimization of LLM systems.
    Starting Price: Free
  • 11
    promptfoo

    promptfoo

    promptfoo

    Promptfoo discovers and eliminates major LLM risks before they are shipped to production. Its founders have experience launching and scaling AI to over 100 million users using automated red-teaming and testing to overcome security, legal, and compliance issues. Promptfoo's open source, developer-first approach has made it the most widely adopted tool in this space, with over 20,000 users. Custom probes for your application that identify failures you actually care about, not just generic jailbreaks and prompt injections. Move quickly with a command-line interface, live reloads, and caching. No SDKs, cloud dependencies, or logins. Used by teams serving millions of users and supported by an active open source community. Build reliable prompts, models, and RAGs with benchmarks specific to your use case. Secure your apps with automated red teaming and pentesting. Speed up evaluations with caching, concurrency, and live reloading.
    Starting Price: Free
  • 12
    HumanSignal

    HumanSignal

    HumanSignal

    HumanSignal's Label Studio Enterprise is a comprehensive platform designed for creating high-quality labeled data and evaluating model outputs with human supervision. It supports labeling and evaluating multi-modal data, image, video, audio, text, and time series, all in one place. It offers customizable labeling interfaces with pre-built templates and powerful plugins, allowing users to tailor the UI and workflows to specific use cases. Label Studio Enterprise integrates seamlessly with popular cloud storage providers and ML/AI models, facilitating pre-annotation, AI-assisted labeling, and prediction generation for model evaluation. The Prompts feature enables users to leverage LLMs to swiftly generate accurate predictions, enabling instant labeling of thousands of tasks. It supports various labeling use cases, including text classification, named entity recognition, sentiment analysis, summarization, and image captioning.
    Starting Price: $99 per month
  • 13
    Portkey

    Portkey

    Portkey.ai

    Launch production-ready apps with the LMOps stack for monitoring, model management, and more. Replace your OpenAI or other provider APIs with the Portkey endpoint. Manage prompts, engines, parameters, and versions in Portkey. Switch, test, and upgrade models with confidence! View your app performance & user level aggregate metics to optimise usage and API costs Keep your user data secure from attacks and inadvertent exposure. Get proactive alerts when things go bad. A/B test your models in the real world and deploy the best performers. We built apps on top of LLM APIs for the past 2 and a half years and realised that while building a PoC took a weekend, taking it to production & managing it was a pain! We're building Portkey to help you succeed in deploying large language models APIs in your applications. Regardless of you trying Portkey, we're always happy to help!
    Starting Price: $49 per month
  • 14
    HoneyHive

    HoneyHive

    HoneyHive

    AI engineering doesn't have to be a black box. Get full visibility with tools for tracing, evaluation, prompt management, and more. HoneyHive is an AI observability and evaluation platform designed to assist teams in building reliable generative AI applications. It offers tools for evaluating, testing, and monitoring AI models, enabling engineers, product managers, and domain experts to collaborate effectively. Measure quality over large test suites to identify improvements and regressions with each iteration. Track usage, feedback, and quality at scale, facilitating the identification of issues and driving continuous improvements. HoneyHive supports integration with various model providers and frameworks, offering flexibility and scalability to meet diverse organizational needs. It is suitable for teams aiming to ensure the quality and performance of their AI agents, providing a unified platform for evaluation, monitoring, and prompt management.
  • 15
    Orq.ai

    Orq.ai

    Orq.ai

    Orq.ai is the #1 platform for software teams to operate agentic AI systems at scale. Optimize prompts, deploy use cases, and monitor performance, no blind spots, no vibe checks. Experiment with prompts and LLM configurations before moving to production. Evaluate agentic AI systems in offline environments. Roll out GenAI features to specific user groups with guardrails, data privacy safeguards, and advanced RAG pipelines. Visualize all events triggered by agents for fast debugging. Get granular control on cost, latency, and performance. Connect to your favorite AI models, or bring your own. Speed up your workflow with out-of-the-box components built for agentic AI systems. Manage core stages of the LLM app lifecycle in one central platform. Self-hosted or hybrid deployment with SOC 2 and GDPR compliance for enterprise security.
  • 16
    Galileo

    Galileo

    Galileo

    Models can be opaque in understanding what data they didn’t perform well on and why. Galileo provides a host of tools for ML teams to inspect and find ML data errors 10x faster. Galileo sifts through your unlabeled data to automatically identify error patterns and data gaps in your model. We get it - ML experimentation is messy. It needs a lot of data and model changes across many runs. Track and compare your runs in one place and quickly share reports with your team. Galileo has been built to integrate with your ML ecosystem. Send a fixed dataset to your data store to retrain, send mislabeled data to your labelers, share a collaborative report, and a lot more! Galileo is purpose-built for ML teams to build better quality models, faster.
  • 17
    Symflower

    Symflower

    Symflower

    Symflower enhances software development by integrating static, dynamic, and symbolic analyses with Large Language Models (LLMs). This combination leverages the precision of deterministic analyses and the creativity of LLMs, resulting in higher quality and faster software development. Symflower assists in identifying the most suitable LLM for specific projects by evaluating various models against real-world scenarios, ensuring alignment with specific environments, workflows, and requirements. The platform addresses common LLM challenges by implementing automatic pre-and post-processing, which improves code quality and functionality. By providing the appropriate context through Retrieval-Augmented Generation (RAG), Symflower reduces hallucinations and enhances LLM performance. Continuous benchmarking ensures that use cases remain effective and compatible with the latest models. Additionally, Symflower accelerates fine-tuning and training data curation, offering detailed reports.
  • 18
    Literal AI

    Literal AI

    Literal AI

    Literal AI is a collaborative platform designed to assist engineering and product teams in developing production-grade Large Language Model (LLM) applications. It offers a suite of tools for observability, evaluation, and analytics, enabling efficient tracking, optimization, and integration of prompt versions. Key features include multimodal logging, encompassing vision, audio, and video, prompt management with versioning and AB testing capabilities, and a prompt playground for testing multiple LLM providers and configurations. Literal AI integrates seamlessly with various LLM providers and AI frameworks, such as OpenAI, LangChain, and LlamaIndex, and provides SDKs in Python and TypeScript for easy instrumentation of code. The platform also supports the creation of experiments against datasets, facilitating continuous improvement and preventing regressions in LLM applications.
  • 19
    ChainForge

    ChainForge

    ChainForge

    ChainForge is an open-source visual programming environment designed for prompt engineering and large language model evaluation. It enables users to assess the robustness of prompts and text-generation models beyond anecdotal evidence. Simultaneously test prompt ideas and variations across multiple LLMs to identify the most effective combinations. Evaluate response quality across different prompts, models, and settings to select the optimal configuration for specific use cases. Set up evaluation metrics and visualize results across prompts, parameters, models, and settings, facilitating data-driven decision-making. Manage multiple conversations simultaneously, template follow-up messages, and inspect outputs at each turn to refine interactions. ChainForge supports various model providers, including OpenAI, HuggingFace, Anthropic, Google PaLM2, Azure OpenAI endpoints, and locally hosted models like Alpaca and Llama. Users can adjust model settings and utilize visualization nodes.
  • Previous
  • You're on page 1
  • Next