Compare the Top LLM Evaluation Tools that integrate with LangChain as of June 2025

This a list of LLM Evaluation tools that integrate with LangChain. Use the filters on the left to add additional filters for products that have integrations with LangChain. View the products that work with LangChain in the table below.

What are LLM Evaluation Tools for LangChain?

LLM (Large Language Model) evaluation tools are designed to assess the performance and accuracy of AI language models. These tools analyze various aspects, such as the model's ability to generate relevant, coherent, and contextually accurate responses. They often include metrics for measuring language fluency, factual correctness, bias, and ethical considerations. By providing detailed feedback, LLM evaluation tools help developers improve model quality, ensure alignment with user expectations, and address potential issues. Ultimately, these tools are essential for refining AI models to make them more reliable, safe, and effective for real-world applications. Compare and read user reviews of the best LLM Evaluation tools for LangChain currently available using the table below. This list is updated regularly.

  • 1
    Langfuse

    Langfuse

    Langfuse

    Langfuse is an open source LLM engineering platform to help teams collaboratively debug, analyze and iterate on their LLM Applications. Observability: Instrument your app and start ingesting traces to Langfuse Langfuse UI: Inspect and debug complex logs and user sessions Prompts: Manage, version and deploy prompts from within Langfuse Analytics: Track metrics (LLM cost, latency, quality) and gain insights from dashboards & data exports Evals: Collect and calculate scores for your LLM completions Experiments: Track and test app behavior before deploying a new version Why Langfuse? - Open source - Model and framework agnostic - Built for production - Incrementally adoptable - start with a single LLM call or integration, then expand to full tracing of complex chains/agents - Use GET API to build downstream use cases and export data
    Starting Price: $29/month
  • 2
    Opik

    Opik

    Comet

    Confidently evaluate, test, and ship LLM applications with a suite of observability tools to calibrate language model outputs across your dev and production lifecycle. Log traces and spans, define and compute evaluation metrics, score LLM outputs, compare performance across app versions, and more. Record, sort, search, and understand each step your LLM app takes to generate a response. Manually annotate, view, and compare LLM responses in a user-friendly table. Log traces during development and in production. Run experiments with different prompts and evaluate against a test set. Choose and run pre-configured evaluation metrics or define your own with our convenient SDK library. Consult built-in LLM judges for complex issues like hallucination detection, factuality, and moderation. Establish reliable performance baselines with Opik's LLM unit tests, built on PyTest. Build comprehensive test suites to evaluate your entire LLM pipeline on every deployment.
    Starting Price: $39 per month
  • 3
    Arize Phoenix
    Phoenix is an open-source observability library designed for experimentation, evaluation, and troubleshooting. It allows AI engineers and data scientists to quickly visualize their data, evaluate performance, track down issues, and export data to improve. Phoenix is built by Arize AI, the company behind the industry-leading AI observability platform, and a set of core contributors. Phoenix works with OpenTelemetry and OpenInference instrumentation. The main Phoenix package is arize-phoenix. We offer several helper packages for specific use cases. Our semantic layer is to add LLM telemetry to OpenTelemetry. Automatically instrumenting popular packages. Phoenix's open-source library supports tracing for AI applications, via manual instrumentation or through integrations with LlamaIndex, Langchain, OpenAI, and others. LLM tracing records the paths taken by requests as they propagate through multiple steps or components of an LLM application.
    Starting Price: Free
  • 4
    Ragas

    Ragas

    Ragas

    Ragas is an open-source framework designed to test and evaluate Large Language Model (LLM) applications. It offers automatic metrics to assess performance and robustness, synthetic test data generation tailored to specific requirements, and workflows to ensure quality during development and production monitoring. Ragas integrates seamlessly with existing stacks, providing insights to enhance LLM applications. The platform is maintained by a team of passionate individuals leveraging cutting-edge research and pragmatic engineering practices to empower visionaries redefining LLM possibilities. Synthetically generate high-quality and diverse evaluation data customized for your requirements. Evaluate and ensure the quality of your LLM application in production. Use insights to improve your application. Automatic metrics that helps you understand the performance and robustness of your LLM application.
    Starting Price: Free
  • 5
    DeepEval

    DeepEval

    Confident AI

    DeepEval is a simple-to-use, open source LLM evaluation framework, for evaluating and testing large-language model systems. It is similar to Pytest but specialized for unit testing LLM outputs. DeepEval incorporates the latest research to evaluate LLM outputs based on metrics such as G-Eval, hallucination, answer relevancy, RAGAS, etc., which uses LLMs and various other NLP models that run locally on your machine for evaluation. Whether your application is implemented via RAG or fine-tuning, LangChain, or LlamaIndex, DeepEval has you covered. With it, you can easily determine the optimal hyperparameters to improve your RAG pipeline, prevent prompt drifting, or even transition from OpenAI to hosting your own Llama2 with confidence. The framework supports synthetic dataset generation with advanced evolution techniques and integrates seamlessly with popular frameworks, allowing for efficient benchmarking and optimization of LLM systems.
    Starting Price: Free
  • 6
    HoneyHive

    HoneyHive

    HoneyHive

    AI engineering doesn't have to be a black box. Get full visibility with tools for tracing, evaluation, prompt management, and more. HoneyHive is an AI observability and evaluation platform designed to assist teams in building reliable generative AI applications. It offers tools for evaluating, testing, and monitoring AI models, enabling engineers, product managers, and domain experts to collaborate effectively. Measure quality over large test suites to identify improvements and regressions with each iteration. Track usage, feedback, and quality at scale, facilitating the identification of issues and driving continuous improvements. HoneyHive supports integration with various model providers and frameworks, offering flexibility and scalability to meet diverse organizational needs. It is suitable for teams aiming to ensure the quality and performance of their AI agents, providing a unified platform for evaluation, monitoring, and prompt management.
  • 7
    Orq.ai

    Orq.ai

    Orq.ai

    Orq.ai is the #1 platform for software teams to operate agentic AI systems at scale. Optimize prompts, deploy use cases, and monitor performance, no blind spots, no vibe checks. Experiment with prompts and LLM configurations before moving to production. Evaluate agentic AI systems in offline environments. Roll out GenAI features to specific user groups with guardrails, data privacy safeguards, and advanced RAG pipelines. Visualize all events triggered by agents for fast debugging. Get granular control on cost, latency, and performance. Connect to your favorite AI models, or bring your own. Speed up your workflow with out-of-the-box components built for agentic AI systems. Manage core stages of the LLM app lifecycle in one central platform. Self-hosted or hybrid deployment with SOC 2 and GDPR compliance for enterprise security.
  • 8
    Galileo

    Galileo

    Galileo

    Models can be opaque in understanding what data they didn’t perform well on and why. Galileo provides a host of tools for ML teams to inspect and find ML data errors 10x faster. Galileo sifts through your unlabeled data to automatically identify error patterns and data gaps in your model. We get it - ML experimentation is messy. It needs a lot of data and model changes across many runs. Track and compare your runs in one place and quickly share reports with your team. Galileo has been built to integrate with your ML ecosystem. Send a fixed dataset to your data store to retrain, send mislabeled data to your labelers, share a collaborative report, and a lot more! Galileo is purpose-built for ML teams to build better quality models, faster.
  • 9
    Literal AI

    Literal AI

    Literal AI

    Literal AI is a collaborative platform designed to assist engineering and product teams in developing production-grade Large Language Model (LLM) applications. It offers a suite of tools for observability, evaluation, and analytics, enabling efficient tracking, optimization, and integration of prompt versions. Key features include multimodal logging, encompassing vision, audio, and video, prompt management with versioning and AB testing capabilities, and a prompt playground for testing multiple LLM providers and configurations. Literal AI integrates seamlessly with various LLM providers and AI frameworks, such as OpenAI, LangChain, and LlamaIndex, and provides SDKs in Python and TypeScript for easy instrumentation of code. The platform also supports the creation of experiments against datasets, facilitating continuous improvement and preventing regressions in LLM applications.
  • Previous
  • You're on page 1
  • Next