Compare the Top LLM Evaluation Tools that integrate with Amazon S3 as of October 2025

This a list of LLM Evaluation tools that integrate with Amazon S3. Use the filters on the left to add additional filters for products that have integrations with Amazon S3. View the products that work with Amazon S3 in the table below.

What are LLM Evaluation Tools for Amazon S3?

LLM (Large Language Model) evaluation tools are designed to assess the performance and accuracy of AI language models. These tools analyze various aspects, such as the model's ability to generate relevant, coherent, and contextually accurate responses. They often include metrics for measuring language fluency, factual correctness, bias, and ethical considerations. By providing detailed feedback, LLM evaluation tools help developers improve model quality, ensure alignment with user expectations, and address potential issues. Ultimately, these tools are essential for refining AI models to make them more reliable, safe, and effective for real-world applications. Compare and read user reviews of the best LLM Evaluation tools for Amazon S3 currently available using the table below. This list is updated regularly.

  • 1
    Latitude

    Latitude

    Latitude

    Latitude is an open-source prompt engineering platform designed to help product teams build, evaluate, and deploy AI models efficiently. It allows users to import and manage prompts at scale, refine them with real or synthetic data, and track the performance of AI models using LLM-as-judge or human-in-the-loop evaluations. With powerful tools for dataset management and automatic logging, Latitude simplifies the process of fine-tuning models and improving AI performance, making it an essential platform for businesses focused on deploying high-quality AI applications.
    Starting Price: $0
  • 2
    HumanSignal

    HumanSignal

    HumanSignal

    HumanSignal's Label Studio Enterprise is a comprehensive platform designed for creating high-quality labeled data and evaluating model outputs with human supervision. It supports labeling and evaluating multi-modal data, image, video, audio, text, and time series, all in one place. It offers customizable labeling interfaces with pre-built templates and powerful plugins, allowing users to tailor the UI and workflows to specific use cases. Label Studio Enterprise integrates seamlessly with popular cloud storage providers and ML/AI models, facilitating pre-annotation, AI-assisted labeling, and prediction generation for model evaluation. The Prompts feature enables users to leverage LLMs to swiftly generate accurate predictions, enabling instant labeling of thousands of tasks. It supports various labeling use cases, including text classification, named entity recognition, sentiment analysis, summarization, and image captioning.
    Starting Price: $99 per month
  • 3
    Label Studio

    Label Studio

    Label Studio

    The most flexible data annotation tool. Quickly installable. Build custom UIs or use pre-built labeling templates. Configurable layouts and templates adapt to your dataset and workflow. Detect objects on images, boxes, polygons, circular, and key points supported. Partition the image into multiple segments. Use ML models to pre-label and optimize the process. Webhooks, Python SDK, and API allow you to authenticate, create projects, import tasks, manage model predictions, and more. Save time by using predictions to assist your labeling process with ML backend integration. Connect to cloud object storage and label data there directly with S3 and GCP. Prepare and manage your dataset in our Data Manager using advanced filters. Support multiple projects, use cases, and data types in one platform. Start typing in the config, and you can quickly preview the labeling interface. At the bottom of the page, you have live serialization updates of what Label Studio expects as an input.
  • 4
    HoneyHive

    HoneyHive

    HoneyHive

    AI engineering doesn't have to be a black box. Get full visibility with tools for tracing, evaluation, prompt management, and more. HoneyHive is an AI observability and evaluation platform designed to assist teams in building reliable generative AI applications. It offers tools for evaluating, testing, and monitoring AI models, enabling engineers, product managers, and domain experts to collaborate effectively. Measure quality over large test suites to identify improvements and regressions with each iteration. Track usage, feedback, and quality at scale, facilitating the identification of issues and driving continuous improvements. HoneyHive supports integration with various model providers and frameworks, offering flexibility and scalability to meet diverse organizational needs. It is suitable for teams aiming to ensure the quality and performance of their AI agents, providing a unified platform for evaluation, monitoring, and prompt management.
  • Previous
  • You're on page 1
  • Next