Compare the Top Large Language Models for Cloud as of December 2025 - Page 11

  • 1
    OpenELM

    OpenELM

    Apple

    OpenELM is an open-source language model family developed by Apple. It uses a layer-wise scaling strategy to efficiently allocate parameters within each layer of the transformer model, leading to enhanced accuracy compared to existing open language models of similar size. OpenELM is trained on publicly available datasets and achieves state-of-the-art performance for its size.
  • 2
    LTM-2-mini

    LTM-2-mini

    Magic AI

    LTM-2-mini is a 100M token context model: LTM-2-mini. 100M tokens equals ~10 million lines of code or ~750 novels. For each decoded token, LTM-2-mini’s sequence-dimension algorithm is roughly 1000x cheaper than the attention mechanism in Llama 3.1 405B1 for a 100M token context window. The contrast in memory requirements is even larger – running Llama 3.1 405B with a 100M token context requires 638 H100s per user just to store a single 100M token KV cache.2 In contrast, LTM requires a small fraction of a single H100’s HBM per user for the same context.
  • 3
    OpenAI o3-mini-high
    The o3-mini-high model from OpenAI advances AI reasoning by refining deep problem-solving in coding, mathematics, and complex tasks. It features adaptive thinking time with adjustable reasoning modes (low, medium, high) to optimize performance based on task complexity. Outperforming the o1 series by 200 Elo points on Codeforces, it delivers high efficiency at a lower cost while maintaining speed and accuracy. As part of the o3 family, it pushes AI problem-solving boundaries while remaining accessible, offering a free tier and expanded limits for Plus subscribers.
  • 4
    Grounded Language Model (GLM)
    Contextual AI introduces its Grounded Language Model (GLM), engineered specifically to minimize hallucinations and deliver highly accurate, source-based responses for retrieval-augmented generation (RAG) and agentic applications. The GLM prioritizes faithfulness to the provided data, ensuring responses are grounded in specific knowledge sources and backed by inline citations. With state-of-the-art performance on the FACTS groundedness benchmark, the GLM outperforms other foundation models in scenarios requiring high accuracy and reliability. The model is designed for enterprise use cases like customer service, finance, and engineering, where trustworthy and precise responses are critical to minimizing risks and improving decision-making.
  • 5
    ERNIE 4.5 Turbo
    ERNIE 4.5 Turbo, unveiled by Baidu at the 2025 Baidu Create conference, is a cutting-edge AI model designed to handle a variety of data inputs, including text, images, audio, and video. It offers powerful multimodal processing capabilities that enable it to perform complex tasks across industries such as customer support automation, content creation, and data analysis. With enhanced reasoning abilities and reduced hallucinations, ERNIE 4.5 Turbo ensures that businesses can achieve higher accuracy and reliability in AI-driven processes. Additionally, this model is priced at just 1% of GPT-4.5’s cost, making it a highly cost-effective alternative for enterprises looking for top-tier AI performance.
  • 6
    ERNIE X1.1
    ERNIE X1.1 is Baidu’s upgraded reasoning model that delivers major improvements over its predecessor. It achieves 34.8% higher factual accuracy, 12.5% better instruction following, and 9.6% stronger agentic capabilities compared to ERNIE X1. In benchmark testing, it surpasses DeepSeek R1-0528 and performs on par with GPT-5 and Gemini 2.5 Pro. Built on the foundation of ERNIE 4.5, it has been enhanced with extensive mid-training and post-training, including reinforcement learning. The model is available through ERNIE Bot, the Wenxiaoyan app, and Baidu’s Qianfan MaaS platform via API. These upgrades are designed to reduce hallucinations, improve reliability, and strengthen real-world AI task performance.
  • 7
    ERNIE 5.0
    ERNIE 5.0 is a next-generation conversational AI platform developed by Baidu, designed to deliver natural, human-like interactions across multiple domains. Built on Baidu’s Enhanced Representation through Knowledge Integration (ERNIE) framework, it fuses advanced natural language processing (NLP) with deep contextual understanding. The model supports multimodal capabilities, allowing it to process and generate text, images, and voice seamlessly. ERNIE 5.0’s refined contextual awareness enables it to handle complex conversations with greater precision and nuance. Its applications span customer service, content generation, and enterprise automation, enhancing both user engagement and productivity. With its robust architecture, ERNIE 5.0 represents a major step forward in Baidu’s pursuit of intelligent, knowledge-driven AI systems.
  • 8
    Chinchilla

    Chinchilla

    Google DeepMind

    Chinchilla is a large language model. Chinchilla uses the same compute budget as Gopher but with 70B parameters and 4× more more data. Chinchilla uniformly and significantly outperforms Gopher (280B), GPT-3 (175B), Jurassic-1 (178B), and Megatron-Turing NLG (530B) on a large range of downstream evaluation tasks. This also means that Chinchilla uses substantially less compute for fine-tuning and inference, greatly facilitating downstream usage. As a highlight, Chinchilla reaches a state-of-the-art average accuracy of 67.5% on the MMLU benchmark, greater than a 7% improvement over Gopher.