Compare the Top Large Language Models for Linux as of November 2024

What are Large Language Models for Linux?

Large language models are artificial neural networks used to process and understand natural language. Commonly trained on large datasets, they can be used for a variety of tasks such as text generation, text classification, question answering, and machine translation. Over time, these models have continued to improve, allowing for better accuracy and greater performance on a variety of tasks. Compare and read user reviews of the best Large Language Models for Linux currently available using the table below. This list is updated regularly.

  • 1
    BLACKBOX AI

    BLACKBOX AI

    BLACKBOX AI

    BLACKBOX.AI is a Coding LLM designed to transform the way we build software. By building BLACKBOX.AI, our goal is to: - Accelerate the pace of innovation within companies by making engineers 10X faster in building and releasing products - Accelerate the growth in software engineers around the world and 10X the number of engineers from ~100M to 1B Capabilities: 1. Natural Language to Code 2. Real-Time Knowledge 3. Code Completion 4. VISION 5. Code Commenting 6. Commit Message Generation 7. Chat with your Code Files BLACKBOX is built to answer coding questions and assist you write code faster. Whether you are fixing a bug, building a new feature or refactoring your code, ask BLACKBOX to help. BLACKBOX has real-time knowledge of the world, making it able to answer questions about recent events, technological breakthroughs, product releases, API documentations & more BLACKBOX integrates directly with VSCode to automatically suggests the next lines of code.
    Starting Price: Free
  • 2
    Stable LM

    Stable LM

    Stability AI

    Stable LM: Stability AI Language Models. The release of Stable LM builds on our experience in open-sourcing earlier language models with EleutherAI, a nonprofit research hub. These language models include GPT-J, GPT-NeoX, and the Pythia suite, which were trained on The Pile open-source dataset. Many recent open-source language models continue to build on these efforts, including Cerebras-GPT and Dolly-2. Stable LM is trained on a new experimental dataset built on The Pile, but three times larger with 1.5 trillion tokens of content. We will release details on the dataset in due course. The richness of this dataset gives Stable LM surprisingly high performance in conversational and coding tasks, despite its small size of 3 to 7 billion parameters (by comparison, GPT-3 has 175 billion parameters). Stable LM 3B is a compact language model designed to operate on portable digital devices like handhelds and laptops, and we’re excited about its capabilities and portability.
    Starting Price: Free
  • 3
    GPT4All

    GPT4All

    Nomic AI

    GPT4All is an ecosystem to train and deploy powerful and customized large language models that run locally on consumer-grade CPUs. The goal is simple - be the best instruction-tuned assistant-style language model that any person or enterprise can freely use, distribute and build on. A GPT4All model is a 3GB - 8GB file that you can download and plug into the GPT4All open-source ecosystem software. Nomic AI supports and maintains this software ecosystem to enforce quality and security alongside spearheading the effort to allow any person or enterprise to easily train and deploy their own on-edge large language models. Data is one the most important ingredients to successfully building a powerful, general-purpose large language model. The GPT4All community has built the GPT4All open source data lake as a staging ground for contributing instruction and assistant tuning data for future GPT4All model trains.
    Starting Price: Free
  • 4
    Qwen-7B

    Qwen-7B

    Alibaba

    Qwen-7B is the 7B-parameter version of the large language model series, Qwen (abbr. Tongyi Qianwen), proposed by Alibaba Cloud. Qwen-7B is a Transformer-based large language model, which is pretrained on a large volume of data, including web texts, books, codes, etc. Additionally, based on the pretrained Qwen-7B, we release Qwen-7B-Chat, a large-model-based AI assistant, which is trained with alignment techniques. The features of the Qwen-7B series include: Trained with high-quality pretraining data. We have pretrained Qwen-7B on a self-constructed large-scale high-quality dataset of over 2.2 trillion tokens. The dataset includes plain texts and codes, and it covers a wide range of domains, including general domain data and professional domain data. Strong performance. In comparison with the models of the similar model size, we outperform the competitors on a series of benchmark datasets, which evaluates natural language understanding, mathematics, coding, etc. And more.
    Starting Price: Free
  • 5
    ChatGLM

    ChatGLM

    Zhipu AI

    ChatGLM-6B is an open-source, Chinese-English bilingual dialogue language model based on the General Language Model (GLM) architecture with 6.2 billion parameters. Combined with model quantization technology, users can deploy locally on consumer-grade graphics cards (only 6GB of video memory is required at the INT4 quantization level). ChatGLM-6B uses technology similar to ChatGPT, optimized for Chinese Q&A and dialogue. After about 1T identifiers of Chinese and English bilingual training, supplemented by supervision and fine-tuning, feedback self-help, human feedback reinforcement learning and other technologies, ChatGLM-6B with 6.2 billion parameters has been able to generate answers that are quite in line with human preferences.
    Starting Price: Free
  • 6
    Llama 3
    We’ve integrated Llama 3 into Meta AI, our intelligent assistant, that expands the ways people can get things done, create and connect with Meta AI. You can see first-hand the performance of Llama 3 by using Meta AI for coding tasks and problem solving. Whether you're developing agents, or other AI-powered applications, Llama 3 in both 8B and 70B will offer the capabilities and flexibility you need to develop your ideas. With the release of Llama 3, we’ve updated the Responsible Use Guide (RUG) to provide the most comprehensive information on responsible development with LLMs. Our system-centric approach includes updates to our trust and safety tools with Llama Guard 2, optimized to support the newly announced taxonomy published by MLCommons expanding its coverage to a more comprehensive set of safety categories, code shield, and Cybersec Eval 2.
    Starting Price: Free
  • 7
    Jurassic-2
    Announcing the launch of Jurassic-2, the latest generation of AI21 Studio’s foundation models, a game-changer in the field of AI, with top-tier quality and new capabilities. And that's not all, we're also releasing our task-specific APIs, with plug-and-play reading and writing capabilities that outperform competitors. Our focus at AI21 Studio is to help developers and businesses leverage reading and writing AI to build real-world products with tangible value. Today marks two important milestones with the release of Jurassic-2 and Task-Specific APIs, empowering you to bring generative AI to production. Jurassic-2 (or J2, as we like to call it) is the next generation of our foundation models with significant improvements in quality and new capabilities including zero-shot instruction-following, reduced latency, and multi-language support. Task-specific APIs provide developers with industry-leading APIs that perform specialized reading and writing tasks out-of-the-box.
    Starting Price: $29 per month
  • 8
    Dolly

    Dolly

    Databricks

    Dolly is a cheap-to-build LLM that exhibits a surprising degree of the instruction following capabilities exhibited by ChatGPT. Whereas the work from the Alpaca team showed that state-of-the-art models could be coaxed into high quality instruction-following behavior, we find that even years-old open source models with much earlier architectures exhibit striking behaviors when fine tuned on a small corpus of instruction training data. Dolly works by taking an existing open source 6 billion parameter model from EleutherAI and modifying it ever so slightly to elicit instruction following capabilities such as brainstorming and text generation not present in the original model, using data from Alpaca.
    Starting Price: Free
  • 9
    mT5

    mT5

    Google

    Multilingual T5 (mT5) is a massively multilingual pretrained text-to-text transformer model, trained following a similar recipe as T5. This repo can be used to reproduce the experiments in the mT5 paper. mT5 is pretrained on the mC4 corpus, covering 101 languages: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bulgarian, Burmese, Catalan, Cebuano, Chichewa, Chinese, Corsican, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish, Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Nepali, Norwegian, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scottish Gaelic, Serbian, Shona, Sindhi, and more.
    Starting Price: Free
  • 10
    Cerebras-GPT
    State-of-the-art language models are extremely challenging to train; they require huge compute budgets, complex distributed compute techniques and deep ML expertise. As a result, few organizations train large language models (LLMs) from scratch. And increasingly those that have the resources and expertise are not open sourcing the results, marking a significant change from even a few months back. At Cerebras, we believe in fostering open access to the most advanced models. With this in mind, we are proud to announce the release to the open source community of Cerebras-GPT, a family of seven GPT models ranging from 111 million to 13 billion parameters. Trained using the Chinchilla formula, these models provide the highest accuracy for a given compute budget. Cerebras-GPT has faster training times, lower training costs, and consumes less energy than any publicly available model to date.
    Starting Price: Free
  • 11
    Falcon-40B

    Falcon-40B

    Technology Innovation Institute (TII)

    Falcon-40B is a 40B parameters causal decoder-only model built by TII and trained on 1,000B tokens of RefinedWeb enhanced with curated corpora. It is made available under the Apache 2.0 license. Why use Falcon-40B? It is the best open-source model currently available. Falcon-40B outperforms LLaMA, StableLM, RedPajama, MPT, etc. See the OpenLLM Leaderboard. It features an architecture optimized for inference, with FlashAttention and multiquery. It is made available under a permissive Apache 2.0 license allowing for commercial use, without any royalties or restrictions. ⚠️ This is a raw, pretrained model, which should be further finetuned for most usecases. If you are looking for a version better suited to taking generic instructions in a chat format, we recommend taking a look at Falcon-40B-Instruct.
    Starting Price: Free
  • 12
    Falcon-7B

    Falcon-7B

    Technology Innovation Institute (TII)

    Falcon-7B is a 7B parameters causal decoder-only model built by TII and trained on 1,500B tokens of RefinedWeb enhanced with curated corpora. It is made available under the Apache 2.0 license. Why use Falcon-7B? It outperforms comparable open-source models (e.g., MPT-7B, StableLM, RedPajama etc.), thanks to being trained on 1,500B tokens of RefinedWeb enhanced with curated corpora. See the OpenLLM Leaderboard. It features an architecture optimized for inference, with FlashAttention and multiquery. It is made available under a permissive Apache 2.0 license allowing for commercial use, without any royalties or restrictions.
    Starting Price: Free
  • 13
    RedPajama

    RedPajama

    RedPajama

    Foundation models such as GPT-4 have driven rapid improvement in AI. However, the most powerful models are closed commercial models or only partially open. RedPajama is a project to create a set of leading, fully open-source models. Today, we are excited to announce the completion of the first step of this project: the reproduction of the LLaMA training dataset of over 1.2 trillion tokens. The most capable foundation models today are closed behind commercial APIs, which limits research, customization, and their use with sensitive data. Fully open-source models hold the promise of removing these limitations, if the open community can close the quality gap between open and closed models. Recently, there has been much progress along this front. In many ways, AI is having its Linux moment. Stable Diffusion showed that open-source can not only rival the quality of commercial offerings like DALL-E but can also lead to incredible creativity from broad participation by communities.
    Starting Price: Free
  • 14
    Vicuna

    Vicuna

    lmsys.org

    Vicuna-13B is an open-source chatbot trained by fine-tuning LLaMA on user-shared conversations collected from ShareGPT. Preliminary evaluation using GPT-4 as a judge shows Vicuna-13B achieves more than 90%* quality of OpenAI ChatGPT and Google Bard while outperforming other models like LLaMA and Stanford Alpaca in more than 90%* of cases. The cost of training Vicuna-13B is around $300. The code and weights, along with an online demo, are publicly available for non-commercial use.
    Starting Price: Free
  • 15
    MPT-7B

    MPT-7B

    MosaicML

    Introducing MPT-7B, the latest entry in our MosaicML Foundation Series. MPT-7B is a transformer trained from scratch on 1T tokens of text and code. It is open source, available for commercial use, and matches the quality of LLaMA-7B. MPT-7B was trained on the MosaicML platform in 9.5 days with zero human intervention at a cost of ~$200k. Now you can train, finetune, and deploy your own private MPT models, either starting from one of our checkpoints or training from scratch. For inspiration, we are also releasing three finetuned models in addition to the base MPT-7B: MPT-7B-Instruct, MPT-7B-Chat, and MPT-7B-StoryWriter-65k+, the last of which uses a context length of 65k tokens!
    Starting Price: Free
  • 16
    OpenLLaMA

    OpenLLaMA

    OpenLLaMA

    OpenLLaMA is a permissively licensed open source reproduction of Meta AI’s LLaMA 7B trained on the RedPajama dataset. Our model weights can serve as the drop in replacement of LLaMA 7B in existing implementations. We also provide a smaller 3B variant of LLaMA model.
    Starting Price: Free
  • 17
    Code Llama
    Code Llama is a large language model (LLM) that can use text prompts to generate code. Code Llama is state-of-the-art for publicly available LLMs on code tasks, and has the potential to make workflows faster and more efficient for current developers and lower the barrier to entry for people who are learning to code. Code Llama has the potential to be used as a productivity and educational tool to help programmers write more robust, well-documented software. Code Llama is a state-of-the-art LLM capable of generating code, and natural language about code, from both code and natural language prompts. Code Llama is free for research and commercial use. Code Llama is built on top of Llama 2 and is available in three models: Code Llama, the foundational code model; Codel Llama - Python specialized for Python; and Code Llama - Instruct, which is fine-tuned for understanding natural language instructions.
    Starting Price: Free
  • 18
    Jan

    Jan

    Jan

    10x productivity with customizable AI assistants, global hotkeys, and in-line AI. Seamless integration into your mobile workflows with elegant features. Conversations, preferences, and model usage stay on your computer—secure, exportable, and can be deleted at any time.
    Starting Price: Free
  • 19
    Mixtral 8x7B

    Mixtral 8x7B

    Mistral AI

    Mixtral 8x7B is a high-quality sparse mixture of experts model (SMoE) with open weights. Licensed under Apache 2.0. Mixtral outperforms Llama 2 70B on most benchmarks with 6x faster inference. It is the strongest open-weight model with a permissive license and the best model overall regarding cost/performance trade-offs. In particular, it matches or outperforms GPT-3.5 on most standard benchmarks.
    Starting Price: Free
  • 20
    Codestral

    Codestral

    Mistral AI

    We introduce Codestral, our first-ever code model. Codestral is an open-weight generative AI model explicitly designed for code generation tasks. It helps developers write and interact with code through a shared instruction and completion API endpoint. As it masters code and English, it can be used to design advanced AI applications for software developers. Codestral is trained on a diverse dataset of 80+ programming languages, including the most popular ones, such as Python, Java, C, C++, JavaScript, and Bash. It also performs well on more specific ones like Swift and Fortran. This broad language base ensures Codestral can assist developers in various coding environments and projects.
    Starting Price: Free
  • 21
    DeepSeek Coder
    DeepSeek Coder is a cutting-edge software tool designed to revolutionize the landscape of data analysis and coding. By leveraging advanced machine learning algorithms and natural language processing capabilities, it empowers users to seamlessly integrate data querying, analysis, and visualization into their workflow. The intuitive interface of DeepSeek Coder enables both novice and experienced programmers to efficiently write, test, and optimize code. Its robust set of features includes real-time syntax checking, intelligent code completion, and comprehensive debugging tools, all designed to streamline the coding process. Additionally, DeepSeek Coder's ability to understand and interpret complex data sets ensures that users can derive meaningful insights and create sophisticated data-driven applications with ease.
    Starting Price: Free
  • 22
    Llama 3.1
    The open source AI model you can fine-tune, distill and deploy anywhere. Our latest instruction-tuned model is available in 8B, 70B and 405B versions. Using our open ecosystem, build faster with a selection of differentiated product offerings to support your use cases. Choose from real-time inference or batch inference services. Download model weights to further optimize cost per token. Adapt for your application, improve with synthetic data and deploy on-prem or in the cloud. Use Llama system components and extend the model using zero shot tool use and RAG to build agentic behaviors. Leverage 405B high quality data to improve specialized models for specific use cases.
    Starting Price: Free
  • 23
    Llama 3.2
    The open-source AI model you can fine-tune, distill and deploy anywhere is now available in more versions. Choose from 1B, 3B, 11B or 90B, or continue building with Llama 3.1 Llama 3.2 is a collection of large language models (LLMs) pretrained and fine-tuned in 1B and 3B sizes that are multilingual text only, and 11B and 90B sizes that take both text and image inputs and output text. Develop highly performative and efficient applications from our latest release. Use our 1B or 3B models for on device applications such as summarizing a discussion from your phone or calling on-device tools like calendar. Use our 11B or 90B models for image use cases such as transforming an existing image into something new or getting more information from an image of your surroundings.
    Starting Price: Free
  • 24
    PaLM

    PaLM

    Google

    PaLM API is an easy and safe way to build on top of our best language models. Today, we’re making an efficient model available, in terms of size and capabilities, and we’ll add other sizes soon. The API also comes with an intuitive tool called MakerSuite, which lets you quickly prototype ideas and, over time, will have features for prompt engineering, synthetic data generation and custom-model tuning — all supported by robust safety tools. Select developers can access the PaLM API and MakerSuite in Private Preview today, and stay tuned for our waitlist soon.
  • 25
    StarCoder

    StarCoder

    BigCode

    StarCoder and StarCoderBase are Large Language Models for Code (Code LLMs) trained on permissively licensed data from GitHub, including from 80+ programming languages, Git commits, GitHub issues, and Jupyter notebooks. Similar to LLaMA, we trained a ~15B parameter model for 1 trillion tokens. We fine-tuned StarCoderBase model for 35B Python tokens, resulting in a new model that we call StarCoder. We found that StarCoderBase outperforms existing open Code LLMs on popular programming benchmarks and matches or surpasses closed models such as code-cushman-001 from OpenAI (the original Codex model that powered early versions of GitHub Copilot). With a context length of over 8,000 tokens, the StarCoder models can process more input than any other open LLM, enabling a wide range of interesting applications. For example, by prompting the StarCoder models with a series of dialogues, we enabled them to act as a technical assistant.
    Starting Price: Free
  • 26
    Llama 2
    The next generation of our open source large language model. This release includes model weights and starting code for pretrained and fine-tuned Llama language models — ranging from 7B to 70B parameters. Llama 2 pretrained models are trained on 2 trillion tokens, and have double the context length than Llama 1. Its fine-tuned models have been trained on over 1 million human annotations. Llama 2 outperforms other open source language models on many external benchmarks, including reasoning, coding, proficiency, and knowledge tests. Llama 2 was pretrained on publicly available online data sources. The fine-tuned model, Llama-2-chat, leverages publicly available instruction datasets and over 1 million human annotations. We have a broad range of supporters around the world who believe in our open approach to today’s AI — companies that have given early feedback and are excited to build with Llama 2.
    Starting Price: Free
  • 27
    TinyLlama

    TinyLlama

    TinyLlama

    The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs. We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
    Starting Price: Free
  • 28
    Pixtral 12B

    Pixtral 12B

    Mistral AI

    Pixtral 12B is a pioneering multimodal AI model developed by Mistral AI, designed to process and interpret both text and image data seamlessly. This model marks a significant advancement in the integration of different data types, allowing for more intuitive interactions and enhanced content creation capabilities. With a foundation built upon Mistral's NeMo 12B text model, Pixtral 12B incorporates an additional vision adapter that adds approximately 400 million parameters, expanding its ability to handle visual inputs up to 1024 x 1024 pixels in size. This model supports a variety of applications, from detailed image analysis to answering questions about visual content, showcasing its versatility in real-world applications. Pixtral 12B's architecture not only supports a large context window of 128k tokens but also employs innovative techniques like GeLU activation and 2D RoPE for its vision components, making it a robust tool for developers and enterprises aiming to leverage AI.
    Starting Price: Free
  • 29
    Jurassic-1

    Jurassic-1

    AI21 Labs

    Jurassic-1 models come in two sizes, where the Jumbo version, at 178B parameters, is the largest and most sophisticated language model ever released for general use by developers. AI21 Studio is currently in open beta, allowing anyone to sign up and immediately start querying Jurassic-1 using our API and interactive web environment. Our mission at AI21 Labs is to fundamentally reimagine the way humans read and write by introducing machines as thought partners, and the only way we can achieve this is if we take on this challenge together. We’ve been researching language models since our Mesozoic Era (aka 2017 😉). Jurassic-1 builds on this research, and it is the first generation of models we’re making available for widespread use.
  • 30
    PaLM 2

    PaLM 2

    Google

    PaLM 2 is our next generation large language model that builds on Google’s legacy of breakthrough research in machine learning and responsible AI. It excels at advanced reasoning tasks, including code and math, classification and question answering, translation and multilingual proficiency, and natural language generation better than our previous state-of-the-art LLMs, including PaLM. It can accomplish these tasks because of the way it was built – bringing together compute-optimal scaling, an improved dataset mixture, and model architecture improvements. PaLM 2 is grounded in Google’s approach to building and deploying AI responsibly. It was evaluated rigorously for its potential harms and biases, capabilities and downstream uses in research and in-product applications. It’s being used in other state-of-the-art models, like Med-PaLM 2 and Sec-PaLM, and is powering generative AI features and tools at Google, like Bard and the PaLM API.
  • Previous
  • You're on page 1
  • 2
  • Next