Compare the Top Large Language Models that integrate with Ruby as of December 2025

This a list of Large Language Models that integrate with Ruby. Use the filters on the left to add additional filters for products that have integrations with Ruby. View the products that work with Ruby in the table below.

What are Large Language Models for Ruby?

Large language models are artificial neural networks used to process and understand natural language. Commonly trained on large datasets, they can be used for a variety of tasks such as text generation, text classification, question answering, and machine translation. Over time, these models have continued to improve, allowing for better accuracy and greater performance on a variety of tasks. Compare and read user reviews of the best Large Language Models for Ruby currently available using the table below. This list is updated regularly.

  • 1
    Gemma 2

    Gemma 2

    Google

    A family of state-of-the-art, light-open models created from the same research and technology that were used to create Gemini models. These models incorporate comprehensive security measures and help ensure responsible and reliable AI solutions through selected data sets and rigorous adjustments. Gemma models achieve exceptional comparative results in their 2B, 7B, 9B, and 27B sizes, even outperforming some larger open models. With Keras 3.0, enjoy seamless compatibility with JAX, TensorFlow, and PyTorch, allowing you to effortlessly choose and change frameworks based on task. Redesigned to deliver outstanding performance and unmatched efficiency, Gemma 2 is optimized for incredibly fast inference on various hardware. The Gemma family of models offers different models that are optimized for specific use cases and adapt to your needs. Gemma models are large text-to-text lightweight language models with a decoder, trained in a huge set of text data, code, and mathematical content.
  • 2
    Claude Sonnet 4.5
    Claude Sonnet 4.5 is Anthropic’s latest frontier model, designed to excel in long-horizon coding, agentic workflows, and intensive computer use while maintaining safety and alignment. It achieves state-of-the-art performance on the SWE-bench Verified benchmark (for software engineering) and leads on OSWorld (a computer use benchmark), with the ability to sustain focus over 30 hours on complex, multi-step tasks. The model introduces improvements in tool handling, memory management, and context processing, enabling more sophisticated reasoning, better domain understanding (from finance and law to STEM), and deeper code comprehension. It supports context editing and memory tools to sustain long conversations or multi-agent tasks, and allows code execution and file creation within Claude apps. Sonnet 4.5 is deployed at AI Safety Level 3 (ASL-3), with classifiers protecting against inputs or outputs tied to risky domains, and includes mitigations against prompt injection.
  • Previous
  • You're on page 1
  • Next