Compare the Top Large Language Models that integrate with Kubernetes as of July 2025

This a list of Large Language Models that integrate with Kubernetes. Use the filters on the left to add additional filters for products that have integrations with Kubernetes. View the products that work with Kubernetes in the table below.

What are Large Language Models for Kubernetes?

Large language models are artificial neural networks used to process and understand natural language. Commonly trained on large datasets, they can be used for a variety of tasks such as text generation, text classification, question answering, and machine translation. Over time, these models have continued to improve, allowing for better accuracy and greater performance on a variety of tasks. Compare and read user reviews of the best Large Language Models for Kubernetes currently available using the table below. This list is updated regularly.

  • 1
    DeepSeek R1

    DeepSeek R1

    DeepSeek

    DeepSeek-R1 is an advanced open-source reasoning model developed by DeepSeek, designed to rival OpenAI's Model o1. Accessible via web, app, and API, it excels in complex tasks such as mathematics and coding, demonstrating superior performance on benchmarks like the American Invitational Mathematics Examination (AIME) and MATH. DeepSeek-R1 employs a mixture of experts (MoE) architecture with 671 billion total parameters, activating 37 billion parameters per token, enabling efficient and accurate reasoning capabilities. This model is part of DeepSeek's commitment to advancing artificial general intelligence (AGI) through open-source innovation.
    Starting Price: Free
  • Previous
  • You're on page 1
  • Next