Compare the Top Large Language Models that integrate with Hugging Face as of October 2025

This a list of Large Language Models that integrate with Hugging Face. Use the filters on the left to add additional filters for products that have integrations with Hugging Face. View the products that work with Hugging Face in the table below.

What are Large Language Models for Hugging Face?

Large language models are artificial neural networks used to process and understand natural language. Commonly trained on large datasets, they can be used for a variety of tasks such as text generation, text classification, question answering, and machine translation. Over time, these models have continued to improve, allowing for better accuracy and greater performance on a variety of tasks. Compare and read user reviews of the best Large Language Models for Hugging Face currently available using the table below. This list is updated regularly.

  • 1
    Qwen

    Qwen

    Alibaba

    Qwen LLM refers to a family of large language models (LLMs) developed by Alibaba Cloud's Damo Academy. These models are trained on a massive dataset of text and code, allowing them to understand and generate human-like text, translate languages, write different kinds of creative content, and answer your questions in an informative way. Here are some key features of Qwen LLMs: Variety of sizes: The Qwen series ranges from 1.8 billion to 72 billion parameters, offering options for different needs and performance levels. Open source: Some versions of Qwen are open-source, which means their code is publicly available for anyone to use and modify. Multilingual support: Qwen can understand and translate multiple languages, including English, Chinese, and French. Diverse capabilities: Besides generation and translation, Qwen models can be used for tasks like question answering, text summarization, and code generation.
    Starting Price: Free
  • 2
    Qwen-7B

    Qwen-7B

    Alibaba

    Qwen-7B is the 7B-parameter version of the large language model series, Qwen (abbr. Tongyi Qianwen), proposed by Alibaba Cloud. Qwen-7B is a Transformer-based large language model, which is pretrained on a large volume of data, including web texts, books, codes, etc. Additionally, based on the pretrained Qwen-7B, we release Qwen-7B-Chat, a large-model-based AI assistant, which is trained with alignment techniques. The features of the Qwen-7B series include: Trained with high-quality pretraining data. We have pretrained Qwen-7B on a self-constructed large-scale high-quality dataset of over 2.2 trillion tokens. The dataset includes plain texts and codes, and it covers a wide range of domains, including general domain data and professional domain data. Strong performance. In comparison with the models of the similar model size, we outperform the competitors on a series of benchmark datasets, which evaluates natural language understanding, mathematics, coding, etc. And more.
    Starting Price: Free
  • 3
    Codestral Mamba
    As a tribute to Cleopatra, whose glorious destiny ended in tragic snake circumstances, we are proud to release Codestral Mamba, a Mamba2 language model specialized in code generation, available under an Apache 2.0 license. Codestral Mamba is another step in our effort to study and provide new architectures. It is available for free use, modification, and distribution, and we hope it will open new perspectives in architecture research. Mamba models offer the advantage of linear time inference and the theoretical ability to model sequences of infinite length. It allows users to engage with the model extensively with quick responses, irrespective of the input length. This efficiency is especially relevant for code productivity use cases, this is why we trained this model with advanced code and reasoning capabilities, enabling it to perform on par with SOTA transformer-based models.
    Starting Price: Free
  • 4
    Mathstral

    Mathstral

    Mistral AI

    As a tribute to Archimedes, whose 2311th anniversary we’re celebrating this year, we are proud to release our first Mathstral model, a specific 7B model designed for math reasoning and scientific discovery. The model has a 32k context window published under the Apache 2.0 license. We’re contributing Mathstral to the science community to bolster efforts in advanced mathematical problems requiring complex, multi-step logical reasoning. The Mathstral release is part of our broader effort to support academic projects, it was produced in the context of our collaboration with Project Numina. Akin to Isaac Newton in his time, Mathstral stands on the shoulders of Mistral 7B and specializes in STEM subjects. It achieves state-of-the-art reasoning capacities in its size category across various industry-standard benchmarks. In particular, it achieves 56.6% on MATH and 63.47% on MMLU, with the following MMLU performance difference by subject between Mathstral 7B and Mistral 7B.
    Starting Price: Free
  • 5
    Qwen2.5

    Qwen2.5

    Alibaba

    Qwen2.5 is an advanced multimodal AI model designed to provide highly accurate and context-aware responses across a wide range of applications. It builds on the capabilities of its predecessors, integrating cutting-edge natural language understanding with enhanced reasoning, creativity, and multimodal processing. Qwen2.5 can seamlessly analyze and generate text, interpret images, and interact with complex data to deliver precise solutions in real time. Optimized for adaptability, it excels in personalized assistance, data analysis, creative content generation, and academic research, making it a versatile tool for professionals and everyday users alike. Its user-centric design emphasizes transparency, efficiency, and alignment with ethical AI practices.
    Starting Price: Free
  • 6
    CodeQwen

    CodeQwen

    Alibaba

    CodeQwen is the code version of Qwen, the large language model series developed by the Qwen team, Alibaba Cloud. It is a transformer-based decoder-only language model pre-trained on a large amount of data of codes. Strong code generation capabilities and competitive performance across a series of benchmarks. Supporting long context understanding and generation with the context length of 64K tokens. CodeQwen supports 92 coding languages and provides excellent performance in text-to-SQL, bug fixes, etc. You can just write several lines of code with transformers to chat with CodeQwen. Essentially, we build the tokenizer and the model from pre-trained methods, and we use the generate method to perform chatting with the help of the chat template provided by the tokenizer. We apply the ChatML template for chat models following our previous practice. The model completes the code snippets according to the given prompts, without any additional formatting.
    Starting Price: Free
  • 7
    Qwen2

    Qwen2

    Alibaba

    Qwen2 is the large language model series developed by Qwen team, Alibaba Cloud. Qwen2 is a series of large language models developed by the Qwen team at Alibaba Cloud. It includes both base language models and instruction-tuned models, ranging from 0.5 billion to 72 billion parameters, and features both dense models and a Mixture-of-Experts model. The Qwen2 series is designed to surpass most previous open-weight models, including its predecessor Qwen1.5, and to compete with proprietary models across a broad spectrum of benchmarks in language understanding, generation, multilingual capabilities, coding, mathematics, and reasoning.
    Starting Price: Free
  • 8
    Qwen2-VL

    Qwen2-VL

    Alibaba

    Qwen2-VL is the latest version of the vision language models based on Qwen2 in the Qwen model familities. Compared with Qwen-VL, Qwen2-VL has the capabilities of: SoTA understanding of images of various resolution & ratio: Qwen2-VL achieves state-of-the-art performance on visual understanding benchmarks, including MathVista, DocVQA, RealWorldQA, MTVQA, etc. Understanding videos of 20 min+: Qwen2-VL can understand videos over 20 minutes for high-quality video-based question answering, dialog, content creation, etc. Agent that can operate your mobiles, robots, etc.: with the abilities of complex reasoning and decision making, Qwen2-VL can be integrated with devices like mobile phones, robots, etc., for automatic operation based on visual environment and text instructions. Multilingual Support: to serve global users, besides English and Chinese, Qwen2-VL now supports the understanding of texts in different languages inside images
    Starting Price: Free
  • 9
    Marco-o1

    Marco-o1

    AIDC-AI

    Marco-o1 is a robust, next-generation AI model tailored for high-performance natural language processing and real-time problem-solving. It is engineered to deliver precise and contextually rich responses, combining deep language comprehension with a streamlined architecture for speed and efficiency. Marco-o1 excels in a variety of applications, including conversational AI, content creation, technical support, and decision-making tasks, adapting seamlessly to diverse user needs. With a focus on intuitive interactions, reliability, and ethical AI principles, Marco-o1 stands out as a cutting-edge solution for individuals and organizations seeking intelligent, adaptive, and scalable AI-driven tools. MCTS allows the exploration of multiple reasoning paths using confidence scores derived from softmax-applied log probabilities of the top-k alternative tokens, guiding the model to optimal solutions.
    Starting Price: Free
  • 10
    Teuken 7B

    Teuken 7B

    OpenGPT-X

    Teuken-7B is a multilingual, open source language model developed under the OpenGPT-X initiative, specifically designed to cater to Europe's diverse linguistic landscape. It has been trained on a dataset comprising over 50% non-English texts, encompassing all 24 official languages of the European Union, ensuring robust performance across these languages. A key innovation in Teuken-7B is its custom multilingual tokenizer, optimized for European languages, which enhances training efficiency and reduces inference costs compared to standard monolingual tokenizers. The model is available in two versions, Teuken-7B-Base, the foundational pre-trained model, and Teuken-7B-Instruct, which has undergone instruction tuning for improved performance in following user prompts. Both versions are accessible on Hugging Face, promoting transparency and collaboration within the AI community. The development of Teuken-7B underscores a commitment to creating AI models that reflect Europe's diversity.
    Starting Price: Free
  • 11
    Qwen2.5-Max
    Qwen2.5-Max is a large-scale Mixture-of-Experts (MoE) model developed by the Qwen team, pretrained on over 20 trillion tokens and further refined through Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF). In evaluations, it outperforms models like DeepSeek V3 in benchmarks such as Arena-Hard, LiveBench, LiveCodeBench, and GPQA-Diamond, while also demonstrating competitive results in other assessments, including MMLU-Pro. Qwen2.5-Max is accessible via API through Alibaba Cloud and can be explored interactively on Qwen Chat.
    Starting Price: Free
  • 12
    Qwen2.5-VL

    Qwen2.5-VL

    Alibaba

    Qwen2.5-VL is the latest vision-language model from the Qwen series, representing a significant advancement over its predecessor, Qwen2-VL. This model excels in visual understanding, capable of recognizing a wide array of objects, including text, charts, icons, graphics, and layouts within images. It functions as a visual agent, capable of reasoning and dynamically directing tools, enabling applications such as computer and phone usage. Qwen2.5-VL can comprehend videos exceeding one hour in length and can pinpoint relevant segments within them. Additionally, it accurately localizes objects in images by generating bounding boxes or points and provides stable JSON outputs for coordinates and attributes. The model also supports structured outputs for data like scanned invoices, forms, and tables, benefiting sectors such as finance and commerce. Available in base and instruct versions across 3B, 7B, and 72B sizes, Qwen2.5-VL is accessible through platforms like Hugging Face and ModelScope.
    Starting Price: Free
  • 13
    Mistral Small 3.1
    ​Mistral Small 3.1 is a state-of-the-art, multimodal, and multilingual AI model released under the Apache 2.0 license. Building upon Mistral Small 3, this enhanced version offers improved text performance, and advanced multimodal understanding, and supports an expanded context window of up to 128,000 tokens. It outperforms comparable models like Gemma 3 and GPT-4o Mini, delivering inference speeds of 150 tokens per second. Designed for versatility, Mistral Small 3.1 excels in tasks such as instruction following, conversational assistance, image understanding, and function calling, making it suitable for both enterprise and consumer-grade AI applications. Its lightweight architecture allows it to run efficiently on a single RTX 4090 or a Mac with 32GB RAM, facilitating on-device deployments. It is available for download on Hugging Face, accessible via Mistral AI's developer playground, and integrated into platforms like Google Cloud Vertex AI, with availability on NVIDIA NIM and
    Starting Price: Free
  • 14
    Qwen3

    Qwen3

    Alibaba

    Qwen3, the latest iteration of the Qwen family of large language models, introduces groundbreaking features that enhance performance across coding, math, and general capabilities. With models like the Qwen3-235B-A22B and Qwen3-30B-A3B, Qwen3 achieves impressive results compared to top-tier models, thanks to its hybrid thinking modes that allow users to control the balance between deep reasoning and quick responses. The platform supports 119 languages and dialects, making it an ideal choice for global applications. Its pre-training process, which uses 36 trillion tokens, enables robust performance, and advanced reinforcement learning (RL) techniques continue to refine its capabilities. Available on platforms like Hugging Face and ModelScope, Qwen3 offers a powerful tool for developers and researchers working in diverse fields.
    Starting Price: Free
  • 15
    NuExtract

    NuExtract

    NuExtract

    NuExtract is a large language model specialized in extracting structured information from documents of any format, including raw text, scanned images, PDFs, PowerPoints, spreadsheets, and more, supporting over a dozen languages and mixed‑language inputs. It delivers JSON‑formatted output that faithfully follows user‑defined templates, with built‑in verification and null‑value handling to minimize hallucinations. Users define extraction tasks by creating a template, either by describing the desired fields or importing existing schemas—and can improve accuracy by adding document, output examples in the example set. The NuExtract Platform provides an intuitive workspace for designing templates, testing extractions in a playground, managing teaching examples, and fine‑tuning settings such as model temperature and document rasterization DPI. Once validated, projects can be deployed via a RESTful API endpoint that processes documents in real time.
    Starting Price: $5 per 1M tokens
  • 16
    DeepSeek V3.1
    DeepSeek V3.1 is a groundbreaking open-weight large language model featuring a massive 685-billion parameters and an extended 128,000‑token context window, enabling it to process documents equivalent to 400-page books in a single prompt. It delivers integrated capabilities for chat, reasoning, and code generation within a unified hybrid architecture, seamlessly blending these functions into one coherent model. V3.1 supports a variety of tensor formats to give developers flexibility in optimizing performance across different hardware. Early benchmark results show robust performance, including a 71.6% score on the Aider coding benchmark, putting it on par with or ahead of systems like Claude Opus 4 and doing so at a far lower cost. Made available under an open source license on Hugging Face with minimal fanfare, DeepSeek V3.1 is poised to reshape access to high-performance AI, challenging traditional proprietary models.
    Starting Price: Free
  • 17
    DeepSeek-V3.1-Terminus
    DeepSeek has released DeepSeek-V3.1-Terminus, which enhances the V3.1 architecture by incorporating user feedback to improve output stability, consistency, and agent performance. It notably reduces instances of mixed Chinese/English character output and unintended garbled characters, resulting in cleaner, more consistent language generation. The update upgrades both the code agent and search agent subsystems to yield stronger, more reliable performance across benchmarks. DeepSeek-V3.1-Terminus is also available as an open source model, and its weights are published on Hugging Face. The model structure remains the same as DeepSeek-V3, ensuring compatibility with existing deployment methods, with updated inference demos provided for community use. While trained at a scale of 685B parameters, the model includes FP8, BF16, and F32 tensor formats, offering flexibility across environments.
    Starting Price: Free
  • 18
    Qwen2.5-1M

    Qwen2.5-1M

    Alibaba

    Qwen2.5-1M is an open-source language model developed by the Qwen team, designed to handle context lengths of up to one million tokens. This release includes two model variants, Qwen2.5-7B-Instruct-1M and Qwen2.5-14B-Instruct-1M, marking the first time Qwen models have been upgraded to support such extensive context lengths. To facilitate efficient deployment, the team has also open-sourced an inference framework based on vLLM, integrated with sparse attention methods, enabling processing of 1M-token inputs with a 3x to 7x speed improvement. Comprehensive technical details, including design insights and ablation experiments, are available in the accompanying technical report.
    Starting Price: Free
  • 19
    Yi-Large
    Yi-Large is a proprietary large language model developed by 01.AI, offering a 32k context length with both input and output costs at $2 per million tokens. It stands out with its advanced capabilities in natural language processing, common-sense reasoning, and multilingual support, performing on par with leading models like GPT-4 and Claude3 in various benchmarks. Yi-Large is designed for tasks requiring complex inference, prediction, and language understanding, making it suitable for applications like knowledge search, data classification, and creating human-like chatbots. Its architecture is based on a decoder-only transformer with enhancements such as pre-normalization and Group Query Attention, and it has been trained on a vast, high-quality multilingual dataset. This model's versatility and cost-efficiency make it a strong contender in the AI market, particularly for enterprises aiming to deploy AI solutions globally.
    Starting Price: $0.19 per 1M input token
  • 20
    Gemma 3

    Gemma 3

    Google

    Gemma 3, introduced by Google, is a new AI model built on the Gemini 2.0 architecture, designed to offer enhanced performance and versatility. This model is capable of running efficiently on a single GPU or TPU, making it accessible for a wide range of developers and researchers. Gemma 3 focuses on improving natural language understanding, generation, and other AI-driven tasks. By offering scalable, powerful AI capabilities, Gemma 3 aims to advance the development of AI systems across various industries and use cases.
    Starting Price: Free
  • 21
    Orpheus TTS

    Orpheus TTS

    Canopy Labs

    Canopy Labs has introduced Orpheus, a family of state-of-the-art speech large language models (LLMs) designed for human-level speech generation. These models are built on the Llama-3 architecture and are trained on over 100,000 hours of English speech data, enabling them to produce natural intonation, emotion, and rhythm that surpasses current state-of-the-art closed source models. Orpheus supports zero-shot voice cloning, allowing users to replicate voices without prior fine-tuning, and offers guided emotion and intonation control through simple tags. The models achieve low latency, with approximately 200ms streaming latency for real-time applications, reducible to around 100ms with input streaming. Canopy Labs has released both pre-trained and fine-tuned 3B-parameter models under the permissive Apache 2.0 license, with plans to release smaller models of 1B, 400M, and 150M parameters for use on resource-constrained devices.
  • 22
    MiniMax-M1

    MiniMax-M1

    MiniMax

    MiniMax‑M1 is a large‑scale hybrid‑attention reasoning model released by MiniMax AI under the Apache 2.0 license. It supports an unprecedented 1 million‑token context window and up to 80,000-token outputs, enabling extended reasoning across long documents. Trained using large‑scale reinforcement learning with a novel CISPO algorithm, MiniMax‑M1 completed full training on 512 H800 GPUs in about three weeks. It achieves state‑of‑the‑art performance on benchmarks in mathematics, coding, software engineering, tool usage, and long‑context understanding, matching or outperforming leading models. Two model variants are available (40K and 80K thinking budgets), with weights and deployment scripts provided via GitHub and Hugging Face.
  • 23
    Gemma 2

    Gemma 2

    Google

    A family of state-of-the-art, light-open models created from the same research and technology that were used to create Gemini models. These models incorporate comprehensive security measures and help ensure responsible and reliable AI solutions through selected data sets and rigorous adjustments. Gemma models achieve exceptional comparative results in their 2B, 7B, 9B, and 27B sizes, even outperforming some larger open models. With Keras 3.0, enjoy seamless compatibility with JAX, TensorFlow, and PyTorch, allowing you to effortlessly choose and change frameworks based on task. Redesigned to deliver outstanding performance and unmatched efficiency, Gemma 2 is optimized for incredibly fast inference on various hardware. The Gemma family of models offers different models that are optimized for specific use cases and adapt to your needs. Gemma models are large text-to-text lightweight language models with a decoder, trained in a huge set of text data, code, and mathematical content.
  • 24
    Jamba

    Jamba

    AI21 Labs

    Jamba is the most powerful & efficient long context model, open for builders and built for the enterprise. Jamba's latency outperforms all leading models of comparable sizes. Jamba's 256k context window is the longest openly available. Jamba's Mamba-Transformer MoE architecture is designed for cost & efficiency gains. Jamba offers key features of OOTB including function calls, JSON mode output, document objects, and citation mode. Jamba 1.5 models maintain high performance across the full length of their context window. Jamba 1.5 models achieve top scores across common quality benchmarks. Secure deployment that suits your enterprise. Seamlessly start using Jamba on our production-grade SaaS platform. The Jamba model family is available for deployment across our strategic partners. We offer VPC & on-prem deployments for enterprises that require custom solutions. For enterprises that have unique, bespoke requirements, we offer hands-on management, continuous pre-training, etc.
  • 25
    Phi-4

    Phi-4

    Microsoft

    Phi-4 is a 14B parameter state-of-the-art small language model (SLM) that excels at complex reasoning in areas such as math, in addition to conventional language processing. Phi-4 is the latest member of our Phi family of small language models and demonstrates what’s possible as we continue to probe the boundaries of SLMs. Phi-4 is currently available on Azure AI Foundry under a Microsoft Research License Agreement (MSRLA) and will be available on Hugging Face. Phi-4 outperforms comparable and larger models on math related reasoning due to advancements throughout the processes, including the use of high-quality synthetic datasets, curation of high-quality organic data, and post-training innovations. Phi-4 continues to push the frontier of size vs quality.
  • 26
    GLM-4.5
    GLM‑4.5 is Z.ai’s latest flagship model in the GLM family, engineered with 355 billion total parameters (32 billion active) and a companion GLM‑4.5‑Air variant (106 billion total, 12 billion active) to unify advanced reasoning, coding, and agentic capabilities in one architecture. It operates in a “thinking” mode for complex, multi‑step reasoning and tool use, and a “non‑thinking” mode for instant responses, supporting up to 128 K token context length and native function calling. Available via the Z.ai chat platform and API, with open weights on HuggingFace and ModelScope, GLM‑4.5 ingests diverse inputs to solve general problem‑solving, common‑sense reasoning, coding from scratch or within existing projects, and end‑to‑end agent workflows such as web browsing and slide generation. Built on a Mixture‑of‑Experts design with loss‑free balance routing, grouped‑query attention, and an MTP layer for speculative decoding, it delivers enterprise‑grade performance.
  • 27
    Tune AI

    Tune AI

    NimbleBox

    Leverage the power of custom models to build your competitive advantage. With our enterprise Gen AI stack, go beyond your imagination and offload manual tasks to powerful assistants instantly – the sky is the limit. For enterprises where data security is paramount, fine-tune and deploy generative AI models on your own cloud, securely.
  • Previous
  • You're on page 1
  • Next