Compare the Top Large Language Models that integrate with Git as of November 2025

This a list of Large Language Models that integrate with Git. Use the filters on the left to add additional filters for products that have integrations with Git. View the products that work with Git in the table below.

What are Large Language Models for Git?

Large language models are artificial neural networks used to process and understand natural language. Commonly trained on large datasets, they can be used for a variety of tasks such as text generation, text classification, question answering, and machine translation. Over time, these models have continued to improve, allowing for better accuracy and greater performance on a variety of tasks. Compare and read user reviews of the best Large Language Models for Git currently available using the table below. This list is updated regularly.

  • 1
    BLACKBOX AI

    BLACKBOX AI

    BLACKBOX AI

    BLACKBOX AI is an advanced AI-powered platform designed to accelerate coding, app development, and deep research tasks. It features an AI Coding Agent that supports real-time voice interaction, GPU acceleration, and remote parallel task execution. Users can convert Figma designs into functional code and transform images into web applications with minimal coding effort. The platform enables screen sharing within IDEs like VSCode and offers mobile access to coding agents. BLACKBOX AI also supports integration with GitHub repositories for streamlined remote workflows. Its capabilities extend to website design, app building with PDF context, and image generation and editing.
    Starting Price: Free
  • 2
    StarCoder

    StarCoder

    BigCode

    StarCoder and StarCoderBase are Large Language Models for Code (Code LLMs) trained on permissively licensed data from GitHub, including from 80+ programming languages, Git commits, GitHub issues, and Jupyter notebooks. Similar to LLaMA, we trained a ~15B parameter model for 1 trillion tokens. We fine-tuned StarCoderBase model for 35B Python tokens, resulting in a new model that we call StarCoder. We found that StarCoderBase outperforms existing open Code LLMs on popular programming benchmarks and matches or surpasses closed models such as code-cushman-001 from OpenAI (the original Codex model that powered early versions of GitHub Copilot). With a context length of over 8,000 tokens, the StarCoder models can process more input than any other open LLM, enabling a wide range of interesting applications. For example, by prompting the StarCoder models with a series of dialogues, we enabled them to act as a technical assistant.
    Starting Price: Free
  • Previous
  • You're on page 1
  • Next