Best Large Language Models - Page 10

Compare the Top Large Language Models as of August 2025 - Page 10

  • 1
    OpenAI o3-mini-high
    The o3-mini-high model from OpenAI advances AI reasoning by refining deep problem-solving in coding, mathematics, and complex tasks. It features adaptive thinking time with adjustable reasoning modes (low, medium, high) to optimize performance based on task complexity. Outperforming the o1 series by 200 Elo points on Codeforces, it delivers high efficiency at a lower cost while maintaining speed and accuracy. As part of the o3 family, it pushes AI problem-solving boundaries while remaining accessible, offering a free tier and expanded limits for Plus subscribers.
  • 2
    Grounded Language Model (GLM)
    Contextual AI introduces its Grounded Language Model (GLM), engineered specifically to minimize hallucinations and deliver highly accurate, source-based responses for retrieval-augmented generation (RAG) and agentic applications. The GLM prioritizes faithfulness to the provided data, ensuring responses are grounded in specific knowledge sources and backed by inline citations. With state-of-the-art performance on the FACTS groundedness benchmark, the GLM outperforms other foundation models in scenarios requiring high accuracy and reliability. The model is designed for enterprise use cases like customer service, finance, and engineering, where trustworthy and precise responses are critical to minimizing risks and improving decision-making.
  • 3
    ERNIE 4.5 Turbo
    ERNIE 4.5 Turbo, unveiled by Baidu at the 2025 Baidu Create conference, is a cutting-edge AI model designed to handle a variety of data inputs, including text, images, audio, and video. It offers powerful multimodal processing capabilities that enable it to perform complex tasks across industries such as customer support automation, content creation, and data analysis. With enhanced reasoning abilities and reduced hallucinations, ERNIE 4.5 Turbo ensures that businesses can achieve higher accuracy and reliability in AI-driven processes. Additionally, this model is priced at just 1% of GPT-4.5’s cost, making it a highly cost-effective alternative for enterprises looking for top-tier AI performance.
  • 4
    Chinchilla

    Chinchilla

    Google DeepMind

    Chinchilla is a large language model. Chinchilla uses the same compute budget as Gopher but with 70B parameters and 4× more more data. Chinchilla uniformly and significantly outperforms Gopher (280B), GPT-3 (175B), Jurassic-1 (178B), and Megatron-Turing NLG (530B) on a large range of downstream evaluation tasks. This also means that Chinchilla uses substantially less compute for fine-tuning and inference, greatly facilitating downstream usage. As a highlight, Chinchilla reaches a state-of-the-art average accuracy of 67.5% on the MMLU benchmark, greater than a 7% improvement over Gopher.