Compare the Top Key-Value Databases that integrate with sqlmap as of June 2025

This a list of Key-Value Databases that integrate with sqlmap. Use the filters on the left to add additional filters for products that have integrations with sqlmap. View the products that work with sqlmap in the table below.

What are Key-Value Databases for sqlmap?

Key-value databases are a type of NoSQL database that store data as pairs, where each unique key is associated with a value. This structure is simple and highly flexible, making key-value databases ideal for scenarios requiring fast access to data, such as caching, session management, and real-time applications. In these databases, the key acts as a unique identifier for retrieving or storing the value, which can be any type of data—strings, numbers, objects, or even binary data. Key-value stores are known for their scalability, performance, and ability to handle high volumes of read and write operations with low latency. These databases are particularly useful for applications that require quick lookups or high availability, such as online retail platforms, social networks, and recommendation systems. Compare and read user reviews of the best Key-Value Databases for sqlmap currently available using the table below. This list is updated regularly.

  • 1
    InterSystems Caché
    InterSystems Caché® is a high-performance database that powers transaction processing applications around the world. It is used for everything from mapping a billion stars in the Milky Way, to processing a billion equity trades in a day, to managing smart energy grids. Caché is a multi-model (object, relational, key-value) DBMS and application server developed by InterSystems. InterSystems Caché provides several APIs to operate with same data simultaneously: key-value, relational, object, document, multi-dimensional. Data can be managed via SQL, Java, node.js, .NET, C++, Python. Caché also provides an application server which hosts web apps (CSP), REST, SOAP, web sockets and other types of TCP access for Caché data.
  • 2
    Apache Ignite

    Apache Ignite

    Apache Ignite

    Use Ignite as a traditional SQL database by leveraging JDBC drivers, ODBC drivers, or the native SQL APIs that are available for Java, C#, C++, Python, and other programming languages. Seamlessly join, group, aggregate, and order your distributed in-memory and on-disk data. Accelerate your existing applications by 100x using Ignite as an in-memory cache or in-memory data grid that is deployed over one or more external databases. Think of a cache that you can query with SQL, transact, and compute on. Build modern applications that support transactional and analytical workloads by using Ignite as a database that scales beyond the available memory capacity. Ignite allocates memory for your hot data and goes to disk whenever applications query cold records. Execute kilobyte-size custom code over petabytes of data. Turn your Ignite database into a distributed supercomputer for low-latency calculations, complex analytics, and machine learning.
  • Previous
  • You're on page 1
  • Next