Best Key-Value Databases for Amazon Web Services (AWS)

Compare the Top Key-Value Databases that integrate with Amazon Web Services (AWS) as of October 2025

This a list of Key-Value Databases that integrate with Amazon Web Services (AWS). Use the filters on the left to add additional filters for products that have integrations with Amazon Web Services (AWS). View the products that work with Amazon Web Services (AWS) in the table below.

What are Key-Value Databases for Amazon Web Services (AWS)?

Key-value databases are a type of NoSQL database that store data as pairs, where each unique key is associated with a value. This structure is simple and highly flexible, making key-value databases ideal for scenarios requiring fast access to data, such as caching, session management, and real-time applications. In these databases, the key acts as a unique identifier for retrieving or storing the value, which can be any type of data—strings, numbers, objects, or even binary data. Key-value stores are known for their scalability, performance, and ability to handle high volumes of read and write operations with low latency. These databases are particularly useful for applications that require quick lookups or high availability, such as online retail platforms, social networks, and recommendation systems. Compare and read user reviews of the best Key-Value Databases for Amazon Web Services (AWS) currently available using the table below. This list is updated regularly.

  • 1
    Dragonfly

    Dragonfly

    DragonflyDB

    Dragonfly is a drop-in Redis replacement that cuts costs and boosts performance. Designed to fully utilize the power of modern cloud hardware and deliver on the data demands of modern applications, Dragonfly frees developers from the limits of traditional in-memory data stores. The power of modern cloud hardware can never be realized with legacy software. Dragonfly is optimized for modern cloud computing, delivering 25x more throughput and 12x lower snapshotting latency when compared to legacy in-memory data stores like Redis, making it easy to deliver the real-time experience your customers expect. Scaling Redis workloads is expensive due to their inefficient, single-threaded model. Dragonfly is far more compute and memory efficient, resulting in up to 80% lower infrastructure costs. Dragonfly scales vertically first, only requiring clustering at an extremely high scale. This results in a far simpler operational model and a more reliable system.
    Starting Price: Free
    View Software
    Visit Website
  • 2
    Macrometa

    Macrometa

    Macrometa

    We deliver a geo-distributed real-time database, stream processing and compute runtime for event-driven applications across up to 175 worldwide edge data centers. App & API builders love our platform because we solve the hardest problems of sharing mutable state across 100s of global locations, with strong consistency & low latency. Macrometa enables you to surgically extend your existing infrastructure to bring part of or your entire application closer to your end users. This allows you to improve performance, user experience, and comply with global data governance laws. Macrometa is a serverless, streaming NoSQL database, with integrated pub/sub and stream data processing and compute engine. Create stateful data infrastructure, stateful functions & containers for long running workloads, and process data streams in real time. You do the code, we do all the ops and orchestration.
  • 3
    ArangoDB

    ArangoDB

    ArangoDB

    Natively store data for graph, document and search needs. Utilize feature-rich access with one query language. Map data natively to the database and access it with the best patterns for the job – traversals, joins, search, ranking, geospatial, aggregations – you name it. Polyglot persistence without the costs. Easily design, scale and adapt your architectures to changing needs and with much less effort. Combine the flexibility of JSON with semantic search and graph technology for next generation feature extraction even for large datasets.
  • Previous
  • You're on page 1
  • Next