Best IT Management Software for Cloudera Data Platform

Compare the Top IT Management Software that integrates with Cloudera Data Platform as of June 2025

This a list of IT Management software that integrates with Cloudera Data Platform. Use the filters on the left to add additional filters for products that have integrations with Cloudera Data Platform. View the products that work with Cloudera Data Platform in the table below.

What is IT Management Software for Cloudera Data Platform?

IT management software is software used to help organizations and IT teams improve operational efficiency. It can be used for tasks such as tracking assets, monitoring networks and equipment, managing workflows, and resolving technical issues. It helps streamline processes to ensure businesses are running smoothly. IT management software can also provide accurate reporting and analytics that enable better decision-making. Compare and read user reviews of the best IT Management software for Cloudera Data Platform currently available using the table below. This list is updated regularly.

  • 1
    TensorFlow

    TensorFlow

    TensorFlow

    An end-to-end open source machine learning platform. TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries and community resources that lets researchers push the state-of-the-art in ML and developers easily build and deploy ML powered applications. Build and train ML models easily using intuitive high-level APIs like Keras with eager execution, which makes for immediate model iteration and easy debugging. Easily train and deploy models in the cloud, on-prem, in the browser, or on-device no matter what language you use. A simple and flexible architecture to take new ideas from concept to code, to state-of-the-art models, and to publication faster. Build, deploy, and experiment easily with TensorFlow.
    Starting Price: Free
  • 2
    Docker

    Docker

    Docker

    Docker takes away repetitive, mundane configuration tasks and is used throughout the development lifecycle for fast, easy and portable application development, desktop and cloud. Docker’s comprehensive end-to-end platform includes UIs, CLIs, APIs and security that are engineered to work together across the entire application delivery lifecycle. Get a head start on your coding by leveraging Docker images to efficiently develop your own unique applications on Windows and Mac. Create your multi-container application using Docker Compose. Integrate with your favorite tools throughout your development pipeline, Docker works with all development tools you use including VS Code, CircleCI and GitHub. Package applications as portable container images to run in any environment consistently from on-premises Kubernetes to AWS ECS, Azure ACI, Google GKE and more. Leverage Docker Trusted Content, including Docker Official Images and images from Docker Verified Publishers.
    Starting Price: $7 per month
  • 3
    Amazon S3
    Amazon Simple Storage Service (Amazon S3) is an object storage service that offers industry-leading scalability, data availability, security, and performance. This means customers of all sizes and industries can use it to store and protect any amount of data for a range of use cases, such as data lakes, websites, mobile applications, backup and restore, archive, enterprise applications, IoT devices, and big data analytics. Amazon S3 provides easy-to-use management features so you can organize your data and configure finely-tuned access controls to meet your specific business, organizational, and compliance requirements. Amazon S3 is designed for 99.999999999% (11 9's) of durability, and stores data for millions of applications for companies all around the world. Scale your storage resources up and down to meet fluctuating demands, without upfront investments or resource procurement cycles. Amazon S3 is designed for 99.999999999% (11 9’s) of data durability.
  • 4
    Google Cloud Storage
    Object storage for companies of all sizes. Store any amount of data. Retrieve it as often as you’d like. Configure your data with Object Lifecycle Management (OLM) to automatically transition to lower-cost storage classes when it meets the criteria you specify, such as when it reaches a certain age or when you’ve stored a newer version of the data. Cloud Storage has an ever-growing list of storage bucket locations where you can store your data with multiple automatic redundancy options. Whether you are optimizing for split-second response time, or creating a robust disaster recovery plan, customize where and how you store your data. Storage Transfer Service and Transfer Service for on-premises data offer two highly performant, online pathways to Cloud Storage—both with the scalability and speed you need to simplify the data transfer process. For offline data transfer our Transfer Appliance is a shippable storage server.
  • 5
    Querona

    Querona

    YouNeedIT

    We make BI & Big Data analytics work easier and faster. Our goal is to empower business users and make always-busy business and heavily loaded BI specialists less dependent on each other when solving data-driven business problems. If you have ever experienced a lack of data you needed, time to consuming report generation or long queue to your BI expert, consider Querona. Querona uses a built-in Big Data engine to handle growing data volumes. Repeatable queries can be cached or calculated in advance. Optimization needs less effort as Querona automatically suggests query improvements. Querona empowers business analysts and data scientists by putting self-service in their hands. They can easily discover and prototype data models, add new data sources, experiment with query optimization and dig in raw data. Less IT is needed. Now users can get live data no matter where it is stored. If databases are too busy to be queried live, Querona will cache the data.
  • 6
    Apache Hadoop YARN

    Apache Hadoop YARN

    Apache Software Foundation

    The fundamental idea of YARN is to split up the functionalities of resource management and job scheduling/monitoring into separate daemons. The idea is to have a global ResourceManager (RM) and per-application ApplicationMaster (AM). An application is either a single job or a DAG of jobs. The ResourceManager and the NodeManager form the data-computation framework. The ResourceManager is the ultimate authority that arbitrates resources among all the applications in the system. The NodeManager is the per-machine framework agent who is responsible for containers, monitoring their resource usage (cpu, memory, disk, network) and reporting the same to the ResourceManager/Scheduler. The per-application ApplicationMaster is, in effect, a framework specific library and is tasked with negotiating resources from the ResourceManager and working with the NodeManager(s) to execute and monitor the tasks.
  • Previous
  • You're on page 1
  • Next