Business Software for Jupyter Notebook - Page 3

Top Software that integrates with Jupyter Notebook as of July 2025 - Page 3

  • 1
    JetBrains DataSpell
    Switch between command and editor modes with a single keystroke. Navigate over cells with arrow keys. Use all of the standard Jupyter shortcuts. Enjoy fully interactive outputs – right under the cell. When editing code cells, enjoy smart code completion, on-the-fly error checking and quick-fixes, easy navigation, and much more. Work with local Jupyter notebooks or connect easily to remote Jupyter, JupyterHub, or JupyterLab servers right from the IDE. Run Python scripts or arbitrary expressions interactively in a Python Console. See the outputs and the state of variables in real-time. Split Python scripts into code cells with the #%% separator and run them individually as you would in a Jupyter notebook. Browse DataFrames and visualizations right in place via interactive controls. All popular Python scientific libraries are supported, including Plotly, Bokeh, Altair, ipywidgets, and others.
    Starting Price: $229
  • 2
    Voxel51

    Voxel51

    Voxel51

    Voxel51 is the company behind FiftyOne, the open-source toolkit that enables you to build better computer vision workflows by improving the quality of your datasets and delivering insights about your models. Explore, search, and slice your datasets. Quickly find the samples and labels that match your criteria. Use FiftyOne’s tight integrations with public datasets like COCO, Open Images, and ActivityNet, or create your own datasets from scratch. Data quality is a key limiting factor in model performance. Use FiftyOne to identify, visualize, and correct your model’s failure modes. Annotation mistakes lead to bad models, but finding mistakes by hand isn’t scalable. FiftyOne helps automatically find and correct label mistakes so you can curate higher-quality datasets. Aggregate performance metrics and manual debugging don’t scale. Use the FiftyOne Brain to identify edge cases, mine new samples for training, and much more.
  • 3
    Scispot

    Scispot

    Scispot

    Scispot powers life science labs with a unified LabOS™ platform, combining ELN, LIMS, SDMS, QMS, and AI in one configurable, no-code system. Built for CROs, Molecular Diagnostics, Pathology, Pharma QC, and Drug Discovery, Scispot streamlines sample management, inventory automation, and regulatory compliance. Connect with 200+ lab instruments and thousands of apps to eliminate data silos while maintaining FDA 21 CFR Part 11, GxP, GDPR, and HIPAA compliance. Scispot's AI tools transform experimental data into actionable insights, with flexible workflows that adapt as research evolves—without IT support. Trusted by 1000+ scientists globally, Scispot enables rapid deployment so teams focus on science, not administration. Accelerate discoveries, ensure compliance, and scale operations with a platform purpose-built for modern biotech innovation.
  • 4
    Chalk

    Chalk

    Chalk

    Powerful data engineering workflows, without the infrastructure headaches. Complex streaming, scheduling, and data backfill pipelines, are all defined in simple, composable Python. Make ETL a thing of the past, fetch all of your data in real-time, no matter how complex. Incorporate deep learning and LLMs into decisions alongside structured business data. Make better predictions with fresher data, don’t pay vendors to pre-fetch data you don’t use, and query data just in time for online predictions. Experiment in Jupyter, then deploy to production. Prevent train-serve skew and create new data workflows in milliseconds. Instantly monitor all of your data workflows in real-time; track usage, and data quality effortlessly. Know everything you computed and data replay anything. Integrate with the tools you already use and deploy to your own infrastructure. Decide and enforce withdrawal limits with custom hold times.
    Starting Price: Free
  • 5
    NodeShift

    NodeShift

    NodeShift

    We help you slash cloud costs so you can focus on building amazing solutions. Spin the globe and point at the map, NodeShift is available there too. Regardless of where you deploy, benefit from increased privacy. Your data is up and running even if an entire country’s electricity grid goes down. The ideal way for organizations young and old to ease their way into the distributed and affordable cloud at their own pace. The most affordable compute and GPU virtual machines at scale. The NodeShift platform aggregates multiple independent data centers across the world and a wide range of existing decentralized solutions under one hood such as Akash, Filecoin, ThreeFold, and many more, with an emphasis on affordable prices and a friendly UX. Payment for its cloud services is simple and straightforward, giving every business access to the same interfaces as the traditional cloud but with several key added benefits of decentralization such as affordability, privacy, and resilience.
    Starting Price: $19.98 per month
  • 6
    Apolo

    Apolo

    Apolo

    Access readily available dedicated machines with pre-configured professional AI development tools, from dependable data centers at competitive prices. From HPC resources to an all-in-one AI platform with an integrated ML development toolkit, Apolo covers it all. Apolo can be deployed in a distributed architecture, as a dedicated enterprise cluster, or as a multi-tenant white-label solution to support dedicated instances or self-service cloud. Right out of the box, Apolo spins up a full-fledged AI-centric development environment with all the tools you need at your fingertips. Apolo manages and automates the infrastructure and processes for successful AI development at scale. Apolo's AI-centric services seamlessly stitch your on-prem and cloud resources, deploy pipelines, and integrate your open-source and commercial development tools. Apolo empowers enterprises with the tools and resources necessary to achieve breakthroughs in AI.
    Starting Price: $5.35 per hour
  • 7
    Moonglow

    Moonglow

    Moonglow

    Moonglow lets you run your local notebooks on a remote GPU as easily as changing your Python runtime. Avoid managing SSH keys, package installations, and other DevOps headaches. We have GPUs for every use case, A40s, A100s, H100s and more. Manage GPUs within your IDE.
  • 8
    DagsHub

    DagsHub

    DagsHub

    DagsHub is a collaborative platform designed for data scientists and machine learning engineers to manage and streamline their projects. It integrates code, data, experiments, and models into a unified environment, facilitating efficient project management and team collaboration. Key features include dataset management, experiment tracking, model registry, and data and model lineage, all accessible through a user-friendly interface. DagsHub supports seamless integration with popular MLOps tools, allowing users to leverage their existing workflows. By providing a centralized hub for all project components, DagsHub enhances transparency, reproducibility, and efficiency in machine learning development. DagsHub is a platform for AI and ML developers that lets you manage and collaborate on your data, models, and experiments, alongside your code. DagsHub was particularly designed for unstructured data for example text, images, audio, medical imaging, and binary files.
    Starting Price: $9 per month
  • 9
    AWS Marketplace
    AWS Marketplace is a curated digital catalog that enables customers to discover, purchase, deploy, and manage third-party software, data products, and services directly within the AWS ecosystem. It provides access to thousands of listings across categories like security, machine learning, business applications, and DevOps tools. With flexible pricing models such as pay-as-you-go, annual subscriptions, and free trials, AWS Marketplace simplifies procurement and billing by integrating costs into a single AWS invoice. It also supports rapid deployment with pre-configured software that can be launched on AWS infrastructure. This streamlined approach allows businesses to accelerate innovation, reduce time-to-market, and maintain better control over software usage and costs.
  • 10
    NeevCloud

    NeevCloud

    NeevCloud

    NeevCloud delivers cutting-edge GPU cloud solutions powered by NVIDIA GPUs like the H200, H100, GB200 NVL72, and many more offering unmatched performance for AI, HPC, and data-intensive workloads. Scale dynamically with flexible pricing and energy-efficient GPUs that reduce costs while maximizing output. Ideal for AI model training, scientific research, media production, and real-time analytics, NeevCloud ensures seamless integration and global accessibility. Experience unparalleled speed, scalability, and sustainability with NeevCloud GPU cloud solutions.
    Starting Price: $1.69/GPU/hour
  • 11
    E2E Cloud

    E2E Cloud

    ​E2E Networks

    ​E2E Cloud provides advanced cloud solutions tailored for AI and machine learning workloads. We offer access to cutting-edge NVIDIA GPUs, including H200, H100, A100, L40S, and L4, enabling businesses to efficiently run AI/ML applications. Our services encompass GPU-intensive cloud computing, AI/ML platforms like TIR built on Jupyter Notebook, Linux and Windows cloud solutions, storage cloud with automated backups, and cloud solutions with pre-installed frameworks. E2E Networks emphasizes a high-value, top-performance infrastructure, boasting a 90% cost reduction in monthly cloud bills for clients. Our multi-region cloud is designed for performance, reliability, resilience, and security, serving over 15,000 clients. Additional features include block storage, load balancers, object storage, one-click deployment, database-as-a-service, API & CLI access, and a content delivery network.
    Starting Price: $0.012 per hour
  • 12
    Train in Data

    Train in Data

    Train in Data

    Train in Data is your go-to online school for mastering machine learning. We offer intermediate and advanced courses in Python programming, data science and machine learning, taught by industry experts with extensive experience in developing, optimizing, and deploying machine learning models in enterprise production environments. We focus on building a solid, intuitive grasp of machine learning concepts, backed by hands-on Python coding to make sure you can actually apply what you learn. Our approach? Simple: learn the theory, understand the why behind it, then get coding. We give you the complete package—theory, coding, and troubleshooting skills—so you can confidently handle real-world projects from start to finish.
    Starting Price: $15
  • 13
    OAuth

    OAuth

    OAuth.io

    Focus on your core app and get to market faster. OAuth.io handles identity infrastructure, maintenance, and security overhead, so your team doesn’t have to. Identity can be difficult, OAuth.io makes it easy. Choose identity providers, add custom attributes, customize your login page or use our widget, integrate with your app - identity solved in minutes. Manage your users from our easy to use dashboard - find and manage users, reset passwords, enforce two-factor authentication, and add memberships and permissions through OAuth.io's simple and easy to use User Management. Fully-featured, hyper-secure user authentication using passwords or tokens. From multi-tenant to complex permissions, OAuth.io has your user authorization modeling covered. Force a second factor of user authentication with our popular integrations.
    Starting Price: $19 per month
  • 14
    Hadoop

    Hadoop

    Apache Software Foundation

    The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using simple programming models. It is designed to scale up from single servers to thousands of machines, each offering local computation and storage. Rather than rely on hardware to deliver high-availability, the library itself is designed to detect and handle failures at the application layer, so delivering a highly-available service on top of a cluster of computers, each of which may be prone to failures. A wide variety of companies and organizations use Hadoop for both research and production. Users are encouraged to add themselves to the Hadoop PoweredBy wiki page. Apache Hadoop 3.3.4 incorporates a number of significant enhancements over the previous major release line (hadoop-3.2).
  • 15
    Apache Spark

    Apache Spark

    Apache Software Foundation

    Apache Spark™ is a unified analytics engine for large-scale data processing. Apache Spark achieves high performance for both batch and streaming data, using a state-of-the-art DAG scheduler, a query optimizer, and a physical execution engine. Spark offers over 80 high-level operators that make it easy to build parallel apps. And you can use it interactively from the Scala, Python, R, and SQL shells. Spark powers a stack of libraries including SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming. You can combine these libraries seamlessly in the same application. Spark runs on Hadoop, Apache Mesos, Kubernetes, standalone, or in the cloud. It can access diverse data sources. You can run Spark using its standalone cluster mode, on EC2, on Hadoop YARN, on Mesos, or on Kubernetes. Access data in HDFS, Alluxio, Apache Cassandra, Apache HBase, Apache Hive, and hundreds of other data sources.
  • 16
    Azure Notebooks
    Develop and run code from anywhere with Jupyter notebooks on Azure. Get started for free. Get a better experience with a free Azure Subscription. Perfect for data scientists, developers, students, or anyone. Develop and run code in your browser regardless of industry or skillset. Supporting more languages than any other platform including Python 2, Python 3, R, and F#. Created by Microsoft Azure: Always accessible, always available from any browser, anywhere in the world.
  • 17
    Kaggle

    Kaggle

    Kaggle

    Kaggle offers a no-setup, customizable, Jupyter Notebooks environment. Access free GPUs and a huge repository of community published data & code. Inside Kaggle you’ll find all the code & data you need to do your data science work. Use over 19,000 public datasets and 200,000 public notebooks to conquer any analysis in no time.
  • 18
    Molecula

    Molecula

    Molecula

    Molecula is an enterprise feature store that simplifies, accelerates, and controls big data access to power machine-scale analytics and AI. Continuously extracting features, reducing the dimensionality of data at the source, and routing real-time feature changes into a central store enables millisecond queries, computation, and feature re-use across formats and locations without copying or moving raw data. The Molecula feature store provides data engineers, data scientists, and application developers a single access point to graduate from reporting and explaining with human-scale data to predicting and prescribing real-time business outcomes with all data. Enterprises spend a lot of money preparing, aggregating, and making numerous copies of their data for every project before they can make decisions with it. Molecula brings an entirely new paradigm for continuous, real-time data analysis to be used for all your mission-critical applications.
  • 19
    Weights & Biases

    Weights & Biases

    Weights & Biases

    Experiment tracking, hyperparameter optimization, model and dataset versioning with Weights & Biases (WandB). Track, compare, and visualize ML experiments with 5 lines of code. Add a few lines to your script, and each time you train a new version of your model, you'll see a new experiment stream live to your dashboard. Optimize models with our massively scalable hyperparameter search tool. Sweeps are lightweight, fast to set up, and plug in to your existing infrastructure for running models. Save every detail of your end-to-end machine learning pipeline — data preparation, data versioning, training, and evaluation. It's never been easier to share project updates. Quickly and easily implement experiment logging by adding just a few lines to your script and start logging results. Our lightweight integration works with any Python script. W&B Weave is here to help developers build and iterate on their AI applications with confidence.
  • 20
    Elucidata Polly
    Harness the power of biomedical data with Polly. The Polly Platform helps to scale batch jobs, workflows, coding environments and visualization applications. Polly allows resource pooling and provides optimal resource allocation based on your usage requirements and makes use of spot instances whenever possible. All this leads to optimization, efficiency, faster response time and lower costs for the resources. Get access to a dashboard to monitor resource usage and cost real time and minimize overhead of resource management by your IT team. Version control is integral to Polly’s infrastructure. Polly ensures version control for your workflows and analyses through a combination of dockers and interactive notebooks. We have built a mechanism that allows the data, code and the environment co-exist. This coupled with data storage on the cloud and the ability to share projects ensures reproducibility of every analysis you perform.
  • 21
    AnzoGraph DB

    AnzoGraph DB

    Cambridge Semantics

    With a huge collection of analytical features, AnzoGraph DB can enhance your analytical framework. Watch this video to learn how AnzoGraph DB is a Massively Parallel Processing (MPP) native graph database that is built for data harmonization and analytics. Horizontally scalable graph database built for online analytics and data harmonization. Take on data harmonization and linked data challenges with AnzoGraph DB, a market-leading analytical graph database. AnzoGraph DB provides industrialized online performance for enterprise-scale graph applications. AnzoGraph DB uses familiar SPARQL*/OWL for semantic graphs but also supports Labeled Property Graphs (LPGs). Access to many analytical, machine learning and data science capabilities help you achieve new insights, delivered at unparalleled speed and scale. Use context and relationships between data as first-class citizens in your analysis. Ultra-fast data loading and analytical queries.
  • 22
    Tokern

    Tokern

    Tokern

    Open source data governance suite for databases and data lakes. Tokern is a simple to use toolkit to collect, organize and analyze data lake's metadata. Run as a command-line app for quick tasks. Run as a service for continuous collection of metadata. Analyze lineage, access control and PII datasets using reporting dashboards or programmatically in Jupyter notebooks. Tokern is an open source data governance suite for databases and data lakes. Improve ROI of your data, comply with regulations like HIPAA, CCPA and GDPR and protect critical data from insider threats with confidence. Centralized metadata management of users, datasets and jobs. Powers other data governance features. Track Column Level Data Lineage for Snowflake, AWS Redshift and BigQuery. Build lineage from query history or ETL scripts. Explore lineage using interactive graphs or programmatically using APIs or SDKs.
  • 23
    Evidation Health
    We measure health outside of formal healthcare settings to better understand disease burden. Our comprehensive view of the patient unlocks business opportunities through new measures of disease and patient health. Develop a patient-centered understanding of disease impact on everyday function to activate physicians and payers, and to guide patient support. Create the algorithms that predict disease onset, progression/regression, or identify key intervention point. Generate support for the benefits of your products using real world digital data. A technology-enabled service for conducting real world research that incorporates novel, everyday behavior data to support clinical, medical affairs, and commercial teams, leveraging Evidation's virtual site, Achievement. Flexible study design, device integration strategies, and protocol management for centralized and streamlined study operations. We can sponsor or you can.
  • 24
    Okera

    Okera

    Okera

    Okera, the Universal Data Authorization company, helps modern, data-driven enterprises accelerate innovation, minimize data security risks, and demonstrate regulatory compliance. The Okera Dynamic Access Platform automatically enforces universal fine-grained access control policies. This allows employees, customers, and partners to use data responsibly, while protecting them from inappropriately accessing data that is confidential, personally identifiable, or regulated. Okera’s robust audit capabilities and data usage intelligence deliver the real-time and historical information that data security, compliance, and data delivery teams need to respond quickly to incidents, optimize processes, and analyze the performance of enterprise data initiatives. Okera began development in 2016 and now dynamically authorizes access to hundreds of petabytes of sensitive data for the world’s most demanding F100 companies and regulatory agencies. The company is headquartered in San Francisco.
  • 25
    Coding Rooms

    Coding Rooms

    Coding Rooms

    The first real-time platform for teaching programming online and in-person that enables you to connect with each student, see their work, and engage with their code instantly. See your students code in real-time and interact with their code to provide immediate and individualized support. Track student engagement live with the activity monitor to identify and focus on students need attention the most. Collaborative editing for you or your students to work together as a class or in breakout groups. Integrated audio and video conferencing, screen sharing, and recording to take your class 100% online. Buy and sell computer science curriculum and course content that is fully integrated with the Coding Rooms platform. Subscribe to and build upon Coding Rooms' own course content to minimize time spent reinventing the wheel. Leverage our autograding feature to reduce time spent on evaluation, allowing you to focus 100% on teaching and providing feedback.
  • 26
    Jovian

    Jovian

    Jovian

    Start coding instantly with an interactive Jupyter notebook running on the cloud. No installation or setup required. Start with a blank notebook, follow-along with a tutorial or use a starter template. Manage all your projects on Jovian. Just run jovian.commit() to capture snapshots, record versions and generate shareable links for your notebooks. Showcase your best work on your Jovian profile. Feature projects, notebooks, collections, activities and more. Track changes in code, outputs, graphs, tables, logs and more with simple, intutive and visual notebook diffs. Share your work online, or collaborate privately with your team. Let others build upon your experiments & contribute back. Collaborators can discuss and comment on specific parts of your notebooks, with a powerful cell-level commenting inteface. A flexible comparison dashboard lets you sort, filter, archive and do much more to analyze ML experiments & results.
  • 27
    lakeFS

    lakeFS

    Treeverse

    lakeFS enables you to manage your data lake the way you manage your code. Run parallel pipelines for experimentation and CI/CD for your data. Simplifying the lives of engineers, data scientists and analysts who are transforming the world with data. lakeFS is an open source platform that delivers resilience and manageability to object-storage based data lakes. With lakeFS you can build repeatable, atomic and versioned data lake operations, from complex ETL jobs to data science and analytics. lakeFS supports AWS S3, Azure Blob Storage and Google Cloud Storage (GCS) as its underlying storage service. It is API compatible with S3 and works seamlessly with all modern data frameworks such as Spark, Hive, AWS Athena, Presto, etc. lakeFS provides a Git-like branching and committing model that scales to exabytes of data by utilizing S3, GCS, or Azure Blob for storage.
  • 28
    OpenHexa

    OpenHexa

    Bluesquare

    Understanding health issues often requires combining complex and heterogeneous data sources, even in the context of single-country interventions. Data can come from HMIS platforms such as DHIS2, from individual tracking systems, from custom software built to address specific issues, or from various Excel reports provided by health experts. Having such diverse data in disconnected silos is often the biggest obstacle to an efficient exploration and analysis process. It also makes collaboration difficult, and many data analysts working on health data end up developing ad-hoc scripts and visualisations on their own laptops and communicating their results in scattered publications from which it is hard to get unified insights. To address this issue, Bluesquare has built OpenHexa, a cloud-based data integration platform consisting of three components, extraction, analysis & visualization. This platform is mostly based on mature open-source technologies.
  • 29
    Vectice

    Vectice

    Vectice

    Enabling all enterprise’s AI/ML initiatives to result in consistent and positive impact. Data scientists deserve a solution that makes all their experiments reproducible, every asset discoverable and simplifies knowledge transfer. Managers deserve a dedicated data science solution. to secure knowledge, automate reporting and simplify reviews and processes. Vectice is on a mission to revolutionize the way data science teams work and collaborate. The goal is to ensure consistent and positive AI/ML impact for all organizations. Vectice is bringing the first automated knowledge solution that is both data science aware, actionable and compatible with the tools data scientists use. Vectice auto-captures all the assets that AI/ML teams create such as datasets, code, notebooks, models or runs. Then it auto-generates documentation from business requirements to production deployments.
  • 30
    Great Expectations

    Great Expectations

    Great Expectations

    Great Expectations is a shared, open standard for data quality. It helps data teams eliminate pipeline debt, through data testing, documentation, and profiling. We recommend deploying within a virtual environment. If you’re not familiar with pip, virtual environments, notebooks, or git, you may want to check out the Supporting. There are many amazing companies using great expectations these days. Check out some of our case studies with companies that we've worked closely with to understand how they are using great expectations in their data stack. Great expectations cloud is a fully managed SaaS offering. We're taking on new private alpha members for great expectations cloud, a fully managed SaaS offering. Alpha members get first access to new features and input to the roadmap.