Business Software for Comet LLM

Top Software that integrates with Comet LLM as of August 2025

Comet LLM Clear Filters

Compare business software, products, and services to find the best solution for your business or organization. Use the filters on the left to drill down by category, pricing, features, organization size, organization type, region, user reviews, integrations, and more. View and sort the products and solutions that match your needs in the results below.

  • 1
    TensorFlow

    TensorFlow

    TensorFlow

    An end-to-end open source machine learning platform. TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries and community resources that lets researchers push the state-of-the-art in ML and developers easily build and deploy ML powered applications. Build and train ML models easily using intuitive high-level APIs like Keras with eager execution, which makes for immediate model iteration and easy debugging. Easily train and deploy models in the cloud, on-prem, in the browser, or on-device no matter what language you use. A simple and flexible architecture to take new ideas from concept to code, to state-of-the-art models, and to publication faster. Build, deploy, and experiment easily with TensorFlow.
    Starting Price: Free
  • 2
    GitLab

    GitLab

    GitLab

    GitLab is a complete DevOps platform. With GitLab, you get a complete CI/CD toolchain out-of-the-box. One interface. One conversation. One permission model. GitLab is a complete DevOps platform, delivered as a single application, fundamentally changing the way Development, Security, and Ops teams collaborate. GitLab helps teams accelerate software delivery from weeks to minutes, reduce development costs, and reduce the risk of application vulnerabilities while increasing developer productivity. Source code management enables coordination, sharing and collaboration across the entire software development team. Track and merge branches, audit changes and enable concurrent work, to accelerate software delivery. Review code, discuss changes, share knowledge, and identify defects in code among distributed teams via asynchronous review and commenting. Automate, track and report code reviews.
    Leader badge
    Starting Price: $29 per user per month
  • 3
    Snowflake

    Snowflake

    Snowflake

    Snowflake is a comprehensive AI Data Cloud platform designed to eliminate data silos and simplify data architectures, enabling organizations to get more value from their data. The platform offers interoperable storage that provides near-infinite scale and access to diverse data sources, both inside and outside Snowflake. Its elastic compute engine delivers high performance for any number of users, workloads, and data volumes with seamless scalability. Snowflake’s Cortex AI accelerates enterprise AI by providing secure access to leading large language models (LLMs) and data chat services. The platform’s cloud services automate complex resource management, ensuring reliability and cost efficiency. Trusted by over 11,000 global customers across industries, Snowflake helps businesses collaborate on data, build data applications, and maintain a competitive edge.
    Starting Price: $2 compute/month
  • 4
    OpenAI

    OpenAI

    OpenAI

    OpenAI’s mission is to ensure that artificial general intelligence (AGI)—by which we mean highly autonomous systems that outperform humans at most economically valuable work—benefits all of humanity. We will attempt to directly build safe and beneficial AGI, but will also consider our mission fulfilled if our work aids others to achieve this outcome. Apply our API to any language task — semantic search, summarization, sentiment analysis, content generation, translation, and more — with only a few examples or by specifying your task in English. One simple integration gives you access to our constantly-improving AI technology. Explore how you integrate with the API with these sample completions.
  • 5
    Python

    Python

    Python

    The core of extensible programming is defining functions. Python allows mandatory and optional arguments, keyword arguments, and even arbitrary argument lists. Whether you're new to programming or an experienced developer, it's easy to learn and use Python. Python can be easy to pick up whether you're a first-time programmer or you're experienced with other languages. The following pages are a useful first step to get on your way to writing programs with Python! The community hosts conferences and meetups to collaborate on code, and much more. Python's documentation will help you along the way, and the mailing lists will keep you in touch. The Python Package Index (PyPI) hosts thousands of third-party modules for Python. Both Python's standard library and the community-contributed modules allow for endless possibilities.
    Starting Price: Free
  • 6
    Keras

    Keras

    Keras

    Keras is an API designed for human beings, not machines. Keras follows best practices for reducing cognitive load: it offers consistent & simple APIs, it minimizes the number of user actions required for common use cases, and it provides clear & actionable error messages. It also has extensive documentation and developer guides. Keras is the most used deep learning framework among top-5 winning teams on Kaggle. Because Keras makes it easier to run new experiments, it empowers you to try more ideas than your competition, faster. And this is how you win. Built on top of TensorFlow 2.0, Keras is an industry-strength framework that can scale to large clusters of GPUs or an entire TPU pod. It's not only possible; it's easy. Take advantage of the full deployment capabilities of the TensorFlow platform. You can export Keras models to JavaScript to run directly in the browser, to TF Lite to run on iOS, Android, and embedded devices. It's also easy to serve Keras models as via a web API.
  • 7
    PyTorch

    PyTorch

    PyTorch

    Transition seamlessly between eager and graph modes with TorchScript, and accelerate the path to production with TorchServe. Scalable distributed training and performance optimization in research and production is enabled by the torch-distributed backend. A rich ecosystem of tools and libraries extends PyTorch and supports development in computer vision, NLP and more. PyTorch is well supported on major cloud platforms, providing frictionless development and easy scaling. Select your preferences and run the install command. Stable represents the most currently tested and supported version of PyTorch. This should be suitable for many users. Preview is available if you want the latest, not fully tested and supported, 1.10 builds that are generated nightly. Please ensure that you have met the prerequisites (e.g., numpy), depending on your package manager. Anaconda is our recommended package manager since it installs all dependencies.
  • 8
    LangChain

    LangChain

    LangChain

    LangChain is a powerful, composable framework designed for building, running, and managing applications powered by large language models (LLMs). It offers an array of tools for creating context-aware, reasoning applications, allowing businesses to leverage their own data and APIs to enhance functionality. LangChain’s suite includes LangGraph for orchestrating agent-driven workflows, and LangSmith for agent observability and performance management. Whether you're building prototypes or scaling full applications, LangChain offers the flexibility and tools needed to optimize the LLM lifecycle, with seamless integrations and fault-tolerant scalability.
  • 9
    spaCy

    spaCy

    spaCy

    spaCy is designed to help you do real work, build real products, or gather real insights. The library respects your time and tries to avoid wasting it. It's easy to install, and its API is simple and productive. spaCy excels at large-scale information extraction tasks. It's written from the ground up in carefully memory-managed Cython. If your application needs to process entire web dumps, spaCy is the library you want to be using. Since its release in 2015, spaCy has become an industry standard with a huge ecosystem. Choose from a variety of plugins, integrate with your machine learning stack, and build custom components and workflows. Components for named entity recognition, part-of-speech tagging, dependency parsing, sentence segmentation, text classification, lemmatization, morphological analysis, entity linking, and more. Easily extensible with custom components and attributes. Easy model packaging, deployment, and workflow management.
    Starting Price: Free
  • 10
    Amazon SageMaker
    Amazon SageMaker is an advanced machine learning service that provides an integrated environment for building, training, and deploying machine learning (ML) models. It combines tools for model development, data processing, and AI capabilities in a unified studio, enabling users to collaborate and work faster. SageMaker supports various data sources, such as Amazon S3 data lakes and Amazon Redshift data warehouses, while ensuring enterprise security and governance through its built-in features. The service also offers tools for generative AI applications, making it easier for users to customize and scale AI use cases. SageMaker’s architecture simplifies the AI lifecycle, from data discovery to model deployment, providing a seamless experience for developers.
  • 11
    Hugging Face

    Hugging Face

    Hugging Face

    Hugging Face is a leading platform for AI and machine learning, offering a vast hub for models, datasets, and tools for natural language processing (NLP) and beyond. The platform supports a wide range of applications, from text, image, and audio to 3D data analysis. Hugging Face fosters collaboration among researchers, developers, and companies by providing open-source tools like Transformers, Diffusers, and Tokenizers. It enables users to build, share, and access pre-trained models, accelerating AI development for a variety of industries.
    Starting Price: $9 per month
  • 12
    Composer

    Composer

    Composer

    The investment app that helps you achieve superior returns with logic and data. Protecting your money in the face of inflation and economic uncertainty requires more than a robotic advisor and a prayer. You deserve a smarter option that responds to market movements without endless hours of research and screen time. Composer offers an array of professionally-created investment strategies that trade based on logic and data. Don’t get caught up in emotions and sensationalized tweets. Trade based on data and market movements. Composer can move your portfolio into its best performers when the market is doing well, and hedge risk during volatility. Composer is your portfolio’s watchdog, constantly monitoring your portfolio, rebalancing positions, and only trading when necessary. Free to sign up, fill out your personal details, then set up and fund your Composer brokerage account. Open up a strategy to see how it works, view its performance and live holdings, and even backtest it.
    Starting Price: $24 per month
  • 13
    Matplotlib

    Matplotlib

    Matplotlib

    Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python. Matplotlib makes easy things easy and hard things possible. A large number of third party packages extend and build on Matplotlib functionality, including several higher-level plotting interfaces (seaborn, HoloViews, ggplot, ...), and a projection and mapping toolkit (Cartopy).
    Starting Price: Free
  • 14
    DeepSpeed

    DeepSpeed

    Microsoft

    DeepSpeed is an open source deep learning optimization library for PyTorch. It's designed to reduce computing power and memory use, and to train large distributed models with better parallelism on existing computer hardware. DeepSpeed is optimized for low latency, high throughput training. DeepSpeed can train DL models with over a hundred billion parameters on the current generation of GPU clusters. It can also train up to 13 billion parameters in a single GPU. DeepSpeed is developed by Microsoft and aims to offer distributed training for large-scale models. It's built on top of PyTorch, which specializes in data parallelism.
    Starting Price: Free
  • 15
    MLflow

    MLflow

    MLflow

    MLflow is an open source platform to manage the ML lifecycle, including experimentation, reproducibility, deployment, and a central model registry. MLflow currently offers four components. Record and query experiments: code, data, config, and results. Package data science code in a format to reproduce runs on any platform. Deploy machine learning models in diverse serving environments. Store, annotate, discover, and manage models in a central repository. The MLflow Tracking component is an API and UI for logging parameters, code versions, metrics, and output files when running your machine learning code and for later visualizing the results. MLflow Tracking lets you log and query experiments using Python, REST, R API, and Java API APIs. An MLflow Project is a format for packaging data science code in a reusable and reproducible way, based primarily on conventions. In addition, the Projects component includes an API and command-line tools for running projects.
  • 16
    PRophet

    PRophet

    PRophet

    PRophet brings new value to every layer in the public relations ecosystem: from generating richer insights for better strategies to working in tandem with traditional platforms to perform even smarter and more efficiently, to creating more relevant and successful pitches and, as a result, better relationships with journalists. Optimize your crisis response or reputational campaign by knowing with greater certainty how and which media will react to an emerging issue. Test, retest and run your pitch over and over again to optimize your language and targets before going to market with your pitch. PRophet predicts which media are most likely to be interested in your pitch and help you uncover new reporters, dramatically increasing your odds for placement. Reduce pitch time by up to 50% while increasing placements by up to 100% so you can spend more time on other high-value tasks.
  • 17
    PySpark

    PySpark

    PySpark

    PySpark is an interface for Apache Spark in Python. It not only allows you to write Spark applications using Python APIs, but also provides the PySpark shell for interactively analyzing your data in a distributed environment. PySpark supports most of Spark’s features such as Spark SQL, DataFrame, Streaming, MLlib (Machine Learning) and Spark Core. Spark SQL is a Spark module for structured data processing. It provides a programming abstraction called DataFrame and can also act as distributed SQL query engine. Running on top of Spark, the streaming feature in Apache Spark enables powerful interactive and analytical applications across both streaming and historical data, while inheriting Spark’s ease of use and fault tolerance characteristics.
  • 18
    Kubeflow

    Kubeflow

    Kubeflow

    The Kubeflow project is dedicated to making deployments of machine learning (ML) workflows on Kubernetes simple, portable and scalable. Our goal is not to recreate other services, but to provide a straightforward way to deploy best-of-breed open-source systems for ML to diverse infrastructures. Anywhere you are running Kubernetes, you should be able to run Kubeflow. Kubeflow provides a custom TensorFlow training job operator that you can use to train your ML model. In particular, Kubeflow's job operator can handle distributed TensorFlow training jobs. Configure the training controller to use CPUs or GPUs and to suit various cluster sizes. Kubeflow includes services to create and manage interactive Jupyter notebooks. You can customize your notebook deployment and your compute resources to suit your data science needs. Experiment with your workflows locally, then deploy them to a cloud when you're ready.
  • 19
    Metaflow

    Metaflow

    Metaflow

    Successful data science projects are delivered by data scientists who can build, improve, and operate end-to-end workflows independently, focusing more on data science, less on engineering. Use Metaflow with your favorite data science libraries, such as Tensorflow or SciKit Learn, and write your models in idiomatic Python code with not much new to learn. Metaflow also supports the R language. Metaflow helps you design your workflow, run it at scale, and deploy it to production. It versions and tracks all your experiments and data automatically. It allows you to inspect results easily in notebooks. Metaflow comes packaged with the tutorials, so getting started is easy. You can make copies of all the tutorials in your current directory using the metaflow command line interface.
  • 20
    Catalyst

    Catalyst

    Catalyst

    Catalyst is a business-performance software solution that sits on top of a Data Lake that includes your ERP, Big Data sources, and any other data you might have. What if you could instantly unlock game-changing insights from deep inside your data? Sound too good to be true? It lets you slice, dice, and drill down into that data in an instant. Reports that used to take weeks? One push of a button. Analyze Big Data alongside your own and you can build stunningly accurate budgets with direct input from sales. Create financial and operational plans from a single source of truth. Wonder what's standing between you and maximum profit-ability? Drill down to transaction level for root cause analysis with a couple of clicks. With Catalyst, every number ties out, every time. When you cut tasks that used to take days down to seconds, you can focus on what matters, analyzing and evolving the business.
  • 21
    Gradio

    Gradio

    Gradio

    Build & Share Delightful Machine Learning Apps. Gradio is the fastest way to demo your machine learning model with a friendly web interface so that anyone can use it, anywhere! Gradio can be installed with pip. Creating a Gradio interface only requires adding a couple lines of code to your project. You can choose from a variety of interface types to interface your function. Gradio can be embedded in Python notebooks or presented as a webpage. A Gradio interface can automatically generate a public link you can share with colleagues that lets them interact with the model on your computer remotely from their own devices. Once you've created an interface, you can permanently host it on Hugging Face. Hugging Face Spaces will host the interface on its servers and provide you with a link you can share.
  • Previous
  • You're on page 1
  • Next