Business Software for AWS Trainium

Top Software that integrates with AWS Trainium as of July 2025

Compare business software, products, and services to find the best solution for your business or organization. Use the filters on the left to drill down by category, pricing, features, organization size, organization type, region, user reviews, integrations, and more. View and sort the products and solutions that match your needs in the results below.

  • 1
    Amazon EC2
    Amazon Elastic Compute Cloud (Amazon EC2) is a web service that provides secure, resizable compute capacity in the cloud. It is designed to make web-scale cloud computing easier for developers. Amazon EC2’s simple web service interface allows you to obtain and configure capacity with minimal friction. It provides you with complete control of your computing resources and lets you run on Amazon’s proven computing environment. Amazon EC2 delivers the broadest choice of compute, networking (up to 400 Gbps), and storage services purpose-built to optimize price performance for ML projects. Build, test, and sign on-demand macOS workloads. Access environments in minutes, dynamically scale capacity as needed, and benefit from AWS’s pay-as-you-go pricing. Access the on-demand infrastructure and capacity you need to run HPC applications faster and cost-effectively. Amazon EC2 delivers secure, reliable, high-performance, and cost-effective compute infrastructure to meet demanding business needs.
  • 2
    Anyscale

    Anyscale

    Anyscale

    Anyscale is a unified AI platform built around Ray, the world’s leading AI compute engine, designed to help teams build, deploy, and scale AI and Python applications efficiently. The platform offers RayTurbo, an optimized version of Ray that delivers up to 4.5x faster data workloads, 6.1x cost savings on large language model inference, and up to 90% lower costs through elastic training and spot instances. Anyscale provides a seamless developer experience with integrated tools like VSCode and Jupyter, automated dependency management, and expert-built app templates. Deployment options are flexible, supporting public clouds, on-premises clusters, and Kubernetes environments. Anyscale Jobs and Services enable reliable production-grade batch processing and scalable web services with features like job queuing, retries, observability, and zero-downtime upgrades. Security and compliance are ensured with private data environments, auditing, access controls, and SOC 2 Type II attestation.
    Starting Price: $0.00006 per minute
  • 3
    Amazon EC2 Trn1 Instances
    Amazon Elastic Compute Cloud (EC2) Trn1 instances, powered by AWS Trainium chips, are purpose-built for high-performance deep learning training of generative AI models, including large language models and latent diffusion models. Trn1 instances offer up to 50% cost-to-train savings over other comparable Amazon EC2 instances. You can use Trn1 instances to train 100B+ parameter DL and generative AI models across a broad set of applications, such as text summarization, code generation, question answering, image and video generation, recommendation, and fraud detection. The AWS Neuron SDK helps developers train models on AWS Trainium (and deploy models on the AWS Inferentia chips). It integrates natively with frameworks such as PyTorch and TensorFlow so that you can continue using your existing code and workflows to train models on Trn1 instances.
    Starting Price: $1.34 per hour
  • 4
    Amazon EC2 Inf1 Instances
    Amazon EC2 Inf1 instances are purpose-built to deliver high-performance and cost-effective machine learning inference. They provide up to 2.3 times higher throughput and up to 70% lower cost per inference compared to other Amazon EC2 instances. Powered by up to 16 AWS Inferentia chips, ML inference accelerators designed by AWS, Inf1 instances also feature 2nd generation Intel Xeon Scalable processors and offer up to 100 Gbps networking bandwidth to support large-scale ML applications. These instances are ideal for deploying applications such as search engines, recommendation systems, computer vision, speech recognition, natural language processing, personalization, and fraud detection. Developers can deploy their ML models on Inf1 instances using the AWS Neuron SDK, which integrates with popular ML frameworks like TensorFlow, PyTorch, and Apache MXNet, allowing for seamless migration with minimal code changes.
    Starting Price: $0.228 per hour
  • 5
    Amazon EC2 G5 Instances
    Amazon EC2 G5 instances are the latest generation of NVIDIA GPU-based instances that can be used for a wide range of graphics-intensive and machine-learning use cases. They deliver up to 3x better performance for graphics-intensive applications and machine learning inference and up to 3.3x higher performance for machine learning training compared to Amazon EC2 G4dn instances. Customers can use G5 instances for graphics-intensive applications such as remote workstations, video rendering, and gaming to produce high-fidelity graphics in real time. With G5 instances, machine learning customers get high-performance and cost-efficient infrastructure to train and deploy larger and more sophisticated models for natural language processing, computer vision, and recommender engine use cases. G5 instances deliver up to 3x higher graphics performance and up to 40% better price performance than G4dn instances. They have more ray tracing cores than any other GPU-based EC2 instance.
    Starting Price: $1.006 per hour
  • 6
    Amazon EC2 P4 Instances
    Amazon EC2 P4d instances deliver high performance for machine learning training and high-performance computing applications in the cloud. Powered by NVIDIA A100 Tensor Core GPUs, they offer industry-leading throughput and low-latency networking, supporting 400 Gbps instance networking. P4d instances provide up to 60% lower cost to train ML models, with an average of 2.5x better performance for deep learning models compared to previous-generation P3 and P3dn instances. Deployed in hyperscale clusters called Amazon EC2 UltraClusters, P4d instances combine high-performance computing, networking, and storage, enabling users to scale from a few to thousands of NVIDIA A100 GPUs based on project needs. Researchers, data scientists, and developers can utilize P4d instances to train ML models for use cases such as natural language processing, object detection and classification, and recommendation engines, as well as to run HPC applications like pharmaceutical discovery and more.
    Starting Price: $11.57 per hour
  • 7
    AWS Parallel Computing Service
    AWS Parallel Computing Service (AWS PCS) is a managed service that simplifies running and scaling high-performance computing workloads and building scientific and engineering models on AWS using Slurm. It enables the creation of complete, elastic environments that integrate computing, storage, networking, and visualization tools, allowing users to focus on research and innovation without the burden of infrastructure management. AWS PCS offers managed updates and built-in observability features, enhancing cluster operations and maintenance. Users can build and deploy scalable, reliable, and secure HPC clusters through the AWS Management Console, AWS Command Line Interface (AWS CLI), or AWS SDK. The service supports various use cases, including tightly coupled workloads like computer-aided engineering, high-throughput computing such as genomics analysis, accelerated computing with GPUs, and custom silicon like AWS Trainium and AWS Inferentia.
    Starting Price: $0.5977 per hour
  • 8
    Upstage Document Parse
    Upstage Document Parse transforms complex documents, PDFs, scanned images, spreadsheets, and slides containing text, tables, charts, and even handwriting, into structured, machine‑readable HTML or Markdown with enterprise‑grade speed and accuracy. Leveraging advanced layout understanding, it recognizes complex tables, charts, and element coordinates, processes pages at an average of 0.6 seconds each (100 pages in under a minute, 5–10× faster than competitors), and delivers over 5% higher layout and table recognition accuracy (TEDS: 93.48, TEDS‑S: 94.16). Easily invoked via a REST API or deployed on‑premises or through marketplaces like AWS, it fits seamlessly into existing pipelines using simple client libraries. Use cases span retrieval‑augmented enterprise search, AI‑powered document summarization, legal and compliance digitization, and financial report processing, preserving intricate layouts and ensuring clean, searchable outputs for downstream LLM workflows.
    Starting Price: $0.1 per 1M tokens
  • 9
    Syn

    Syn

    Upstage AI

    Syn is a next‑generation Japanese large language model co‑developed by Upstage and Karakuri, featuring under 14 billion parameters and optimized for enterprise use in finance, manufacturing, legal, and healthcare. It delivers top‑tier benchmark performance on the Weights & Biases Nejumi Leaderboard, achieving industry‑leading scores for accuracy and alignment, while maintaining cost efficiency through a lightweight architecture derived from Solar Mini. Syn excels in Japanese “truthfulness” and safety, understanding nuanced expressions and industry‑specific terminology, and offers flexible fine‑tuning to integrate proprietary data and domain knowledge. Built for scalable deployment, it supports on‑premises, AWS Marketplace, and cloud environments, with security and compliance safeguards tailored to enterprise requirements. Leveraging AWS Trainium, Syn reduces training costs by approximately 50 percent compared to traditional GPU setups, enabling rapid customization of use cases.
    Starting Price: $0.1 per 1M tokens
  • 10
    C++

    C++

    C++

    C++ is a simple and clear language in its expressions. It is true that a piece of code written with C++ may be seen by a stranger of programming a bit more cryptic than some other languages due to the intensive use of special characters ({}[]*&!|...), but once one knows the meaning of such characters it can be even more schematic and clear than other languages that rely more on English words. Also, the simplification of the input/output interface of C++ in comparison to C and the incorporation of the standard template library in the language, makes the communication and manipulation of data in a program written in C++ as simple as in other languages, without losing the power it offers. It is a programming model that treats programming from a perspective where each component is considered an object, with its own properties and methods, replacing or complementing structured programming paradigm, where the focus was on procedures and parameters.
    Starting Price: Free
  • 11
    AWS Neuron

    AWS Neuron

    Amazon Web Services

    It supports high-performance training on AWS Trainium-based Amazon Elastic Compute Cloud (Amazon EC2) Trn1 instances. For model deployment, it supports high-performance and low-latency inference on AWS Inferentia-based Amazon EC2 Inf1 instances and AWS Inferentia2-based Amazon EC2 Inf2 instances. With Neuron, you can use popular frameworks, such as TensorFlow and PyTorch, and optimally train and deploy machine learning (ML) models on Amazon EC2 Trn1, Inf1, and Inf2 instances with minimal code changes and without tie-in to vendor-specific solutions. AWS Neuron SDK, which supports Inferentia and Trainium accelerators, is natively integrated with PyTorch and TensorFlow. This integration ensures that you can continue using your existing workflows in these popular frameworks and get started with only a few lines of code changes. For distributed model training, the Neuron SDK supports libraries, such as Megatron-LM and PyTorch Fully Sharded Data Parallel (FSDP).
  • 12
    Amazon EC2 P5 Instances
    Amazon Elastic Compute Cloud (Amazon EC2) P5 instances, powered by NVIDIA H100 Tensor Core GPUs, and P5e and P5en instances powered by NVIDIA H200 Tensor Core GPUs deliver the highest performance in Amazon EC2 for deep learning and high-performance computing applications. They help you accelerate your time to solution by up to 4x compared to previous-generation GPU-based EC2 instances, and reduce the cost to train ML models by up to 40%. These instances help you iterate on your solutions at a faster pace and get to market more quickly. You can use P5, P5e, and P5en instances for training and deploying increasingly complex large language models and diffusion models powering the most demanding generative artificial intelligence applications. These applications include question-answering, code generation, video and image generation, and speech recognition. You can also use these instances to deploy demanding HPC applications at scale for pharmaceutical discovery.
  • 13
    Amazon EC2 Capacity Blocks for ML
    Amazon EC2 Capacity Blocks for ML enable you to reserve accelerated compute instances in Amazon EC2 UltraClusters for your machine learning workloads. This service supports Amazon EC2 P5en, P5e, P5, and P4d instances, powered by NVIDIA H200, H100, and A100 Tensor Core GPUs, respectively, as well as Trn2 and Trn1 instances powered by AWS Trainium. You can reserve these instances for up to six months in cluster sizes ranging from one to 64 instances (512 GPUs or 1,024 Trainium chips), providing flexibility for various ML workloads. Reservations can be made up to eight weeks in advance. By colocating in Amazon EC2 UltraClusters, Capacity Blocks offer low-latency, high-throughput network connectivity, facilitating efficient distributed training. This setup ensures predictable access to high-performance computing resources, allowing you to plan ML development confidently, run experiments, build prototypes, and accommodate future surges in demand for ML applications.
  • 14
    Amazon EC2 UltraClusters
    Amazon EC2 UltraClusters enable you to scale to thousands of GPUs or purpose-built machine learning accelerators, such as AWS Trainium, providing on-demand access to supercomputing-class performance. They democratize supercomputing for ML, generative AI, and high-performance computing developers through a simple pay-as-you-go model without setup or maintenance costs. UltraClusters consist of thousands of accelerated EC2 instances co-located in a given AWS Availability Zone, interconnected using Elastic Fabric Adapter (EFA) networking in a petabit-scale nonblocking network. This architecture offers high-performance networking and access to Amazon FSx for Lustre, a fully managed shared storage built on a high-performance parallel file system, enabling rapid processing of massive datasets with sub-millisecond latencies. EC2 UltraClusters provide scale-out capabilities for distributed ML training and tightly coupled HPC workloads, reducing training times.
  • 15
    Amazon EC2 Trn2 Instances
    Amazon EC2 Trn2 instances, powered by AWS Trainium2 chips, are purpose-built for high-performance deep learning training of generative AI models, including large language models and diffusion models. They offer up to 50% cost-to-train savings over comparable Amazon EC2 instances. Trn2 instances support up to 16 Trainium2 accelerators, providing up to 3 petaflops of FP16/BF16 compute power and 512 GB of high-bandwidth memory. To facilitate efficient data and model parallelism, Trn2 instances feature NeuronLink, a high-speed, nonblocking interconnect, and support up to 1600 Gbps of second-generation Elastic Fabric Adapter (EFAv2) network bandwidth. They are deployed in EC2 UltraClusters, enabling scaling up to 30,000 Trainium2 chips interconnected with a nonblocking petabit-scale network, delivering 6 exaflops of compute performance. The AWS Neuron SDK integrates natively with popular machine learning frameworks like PyTorch and TensorFlow.
  • Previous
  • You're on page 1
  • Next