Best HPC Software for Amazon Web Services (AWS)

Compare the Top HPC Software that integrates with Amazon Web Services (AWS) as of June 2025

This a list of HPC software that integrates with Amazon Web Services (AWS). Use the filters on the left to add additional filters for products that have integrations with Amazon Web Services (AWS). View the products that work with Amazon Web Services (AWS) in the table below.

What is HPC Software for Amazon Web Services (AWS)?

High-Performance Computing (HPC) software are applications designed to maximize computational power, enabling complex and resource-intensive tasks to be executed efficiently. These programs optimize parallel processing, often leveraging supercomputers or distributed computing clusters to solve problems in fields like scientific research, engineering, and data analytics. HPC software includes components for workload management, data communication, and performance tuning, ensuring scalability and efficient resource utilization. Examples include simulation software, machine learning frameworks, and tools for weather modeling or molecular dynamics. By harnessing advanced algorithms and hardware, HPC software accelerates computation, reducing the time required for tasks that would otherwise take weeks or months on conventional systems. Compare and read user reviews of the best HPC software for Amazon Web Services (AWS) currently available using the table below. This list is updated regularly.

  • 1
    UberCloud

    UberCloud

    Simr (formerly UberCloud)

    Simr (formerly UberCloud) is a cutting-edge platform for Simulation Operations Automation (SimOps). It streamlines and automates complex simulation workflows, enhancing productivity and collaboration. Leveraging cloud-based infrastructure, Simr offers scalable, cost-effective solutions for industries like automotive, aerospace, and electronics. Trusted by leading global companies, Simr empowers engineers to innovate efficiently and effectively. Simr supports a variety of CFD, FEA and other CAE software including Ansys, COMSOL, Abaqus, CST, STAR-CCM+, MATLAB, Lumerical and more. Simr automates every major cloud including Microsoft Azure, Amazon AWS, and Google GCP.
  • 2
    NVIDIA GPU-Optimized AMI
    The NVIDIA GPU-Optimized AMI is a virtual machine image for accelerating your GPU accelerated Machine Learning, Deep Learning, Data Science and HPC workloads. Using this AMI, you can spin up a GPU-accelerated EC2 VM instance in minutes with a pre-installed Ubuntu OS, GPU driver, Docker and NVIDIA container toolkit. This AMI provides easy access to NVIDIA's NGC Catalog, a hub for GPU-optimized software, for pulling & running performance-tuned, tested, and NVIDIA certified docker containers. The NGC catalog provides free access to containerized AI, Data Science, and HPC applications, pre-trained models, AI SDKs and other resources to enable data scientists, developers, and researchers to focus on building and deploying solutions. This GPU-optimized AMI is free with an option to purchase enterprise support offered through NVIDIA AI Enterprise. For how to get support for this AMI, scroll down to 'Support Information'
    Starting Price: $3.06 per hour
  • 3
    Intel oneAPI HPC Toolkit
    High-performance computing (HPC) is at the core of AI, machine learning, and deep learning applications. The Intel® oneAPI HPC Toolkit (HPC Kit) delivers what developers need to build, analyze, optimize, and scale HPC applications with the latest techniques in vectorization, multithreading, multi-node parallelization, and memory optimization. This toolkit is an add-on to the Intel® oneAPI Base Toolkit, which is required for full functionality. It also includes access to the Intel® Distribution for Python*, the Intel® oneAPI DPC++/C++ C¿compiler, powerful data-centric libraries, and advanced analysis tools. Get what you need to build, test, and optimize your oneAPI projects for free. With an Intel® Developer Cloud account, you get 120 days of access to the latest Intel® hardware, CPUs, GPUs, FPGAs, and Intel oneAPI tools and frameworks. No software downloads. No configuration steps, and no installations.
  • 4
    Amazon EC2 P4 Instances
    Amazon EC2 P4d instances deliver high performance for machine learning training and high-performance computing applications in the cloud. Powered by NVIDIA A100 Tensor Core GPUs, they offer industry-leading throughput and low-latency networking, supporting 400 Gbps instance networking. P4d instances provide up to 60% lower cost to train ML models, with an average of 2.5x better performance for deep learning models compared to previous-generation P3 and P3dn instances. Deployed in hyperscale clusters called Amazon EC2 UltraClusters, P4d instances combine high-performance computing, networking, and storage, enabling users to scale from a few to thousands of NVIDIA A100 GPUs based on project needs. Researchers, data scientists, and developers can utilize P4d instances to train ML models for use cases such as natural language processing, object detection and classification, and recommendation engines, as well as to run HPC applications like pharmaceutical discovery and more.
    Starting Price: $11.57 per hour
  • 5
    Amazon S3 Express One Zone
    Amazon S3 Express One Zone is a high-performance, single-Availability Zone storage class purpose-built to deliver consistent single-digit millisecond data access for your most frequently accessed data and latency-sensitive applications. It offers data access speeds up to 10 times faster and requests costs up to 50% lower than S3 Standard. With S3 Express One Zone, you can select a specific AWS Availability Zone within an AWS Region to store your data, allowing you to co-locate your storage and compute resources in the same Availability Zone to further optimize performance, which helps lower compute costs and run workloads faster. Data is stored in a different bucket type, an S3 directory bucket, which supports hundreds of thousands of requests per second. Additionally, you can use S3 Express One Zone with services such as Amazon SageMaker Model Training, Amazon Athena, Amazon EMR, and AWS Glue Data Catalog to accelerate your machine learning and analytics workloads.
  • 6
    AWS Parallel Computing Service
    AWS Parallel Computing Service (AWS PCS) is a managed service that simplifies running and scaling high-performance computing workloads and building scientific and engineering models on AWS using Slurm. It enables the creation of complete, elastic environments that integrate computing, storage, networking, and visualization tools, allowing users to focus on research and innovation without the burden of infrastructure management. AWS PCS offers managed updates and built-in observability features, enhancing cluster operations and maintenance. Users can build and deploy scalable, reliable, and secure HPC clusters through the AWS Management Console, AWS Command Line Interface (AWS CLI), or AWS SDK. The service supports various use cases, including tightly coupled workloads like computer-aided engineering, high-throughput computing such as genomics analysis, accelerated computing with GPUs, and custom silicon like AWS Trainium and AWS Inferentia.
    Starting Price: $0.5977 per hour
  • 7
    Rocky Linux

    Rocky Linux

    Ctrl IQ, Inc.

    CIQ empowers people to do amazing things by providing innovative and stable software infrastructure solutions for all computing needs. From the base operating system, through containers, orchestration, provisioning, computing, and cloud applications, CIQ works with every part of the technology stack to drive solutions for customers and communities with stable, scalable, secure production environments. CIQ is the founding support and services partner of Rocky Linux, and the creator of the next generation federated computing stack. - Rocky Linux, open, Secure Enterprise Linux - Apptainer, application Containers for High Performance Computing - Warewulf, cluster Management and Operating System Provisioning - HPC2.0, the Next Generation of High Performance Computing, a Cloud Native Federated Computing Platform - Traditional HPC, turnkey computing stack for traditional HPC
  • 8
    NVIDIA DGX Cloud
    NVIDIA DGX Cloud offers a fully managed, end-to-end AI platform that leverages the power of NVIDIA’s advanced hardware and cloud computing services. This platform allows businesses and organizations to scale AI workloads seamlessly, providing tools for machine learning, deep learning, and high-performance computing (HPC). DGX Cloud integrates seamlessly with leading cloud providers, delivering the performance and flexibility required to handle the most demanding AI applications. This service is ideal for businesses looking to enhance their AI capabilities without the need to manage physical infrastructure.
  • 9
    Amazon EC2 P5 Instances
    Amazon Elastic Compute Cloud (Amazon EC2) P5 instances, powered by NVIDIA H100 Tensor Core GPUs, and P5e and P5en instances powered by NVIDIA H200 Tensor Core GPUs deliver the highest performance in Amazon EC2 for deep learning and high-performance computing applications. They help you accelerate your time to solution by up to 4x compared to previous-generation GPU-based EC2 instances, and reduce the cost to train ML models by up to 40%. These instances help you iterate on your solutions at a faster pace and get to market more quickly. You can use P5, P5e, and P5en instances for training and deploying increasingly complex large language models and diffusion models powering the most demanding generative artificial intelligence applications. These applications include question-answering, code generation, video and image generation, and speech recognition. You can also use these instances to deploy demanding HPC applications at scale for pharmaceutical discovery.
  • 10
    Amazon EC2 UltraClusters
    Amazon EC2 UltraClusters enable you to scale to thousands of GPUs or purpose-built machine learning accelerators, such as AWS Trainium, providing on-demand access to supercomputing-class performance. They democratize supercomputing for ML, generative AI, and high-performance computing developers through a simple pay-as-you-go model without setup or maintenance costs. UltraClusters consist of thousands of accelerated EC2 instances co-located in a given AWS Availability Zone, interconnected using Elastic Fabric Adapter (EFA) networking in a petabit-scale nonblocking network. This architecture offers high-performance networking and access to Amazon FSx for Lustre, a fully managed shared storage built on a high-performance parallel file system, enabling rapid processing of massive datasets with sub-millisecond latencies. EC2 UltraClusters provide scale-out capabilities for distributed ML training and tightly coupled HPC workloads, reducing training times.
  • 11
    AWS HPC

    AWS HPC

    Amazon

    AWS High Performance Computing (HPC) services empower users to execute large-scale simulations and deep learning workloads in the cloud, providing virtually unlimited compute capacity, high-performance file systems, and high-throughput networking. This suite of services accelerates innovation by offering a broad range of cloud-based tools, including machine learning and analytics, enabling rapid design and testing of new products. Operational efficiency is maximized through on-demand access to compute resources, allowing users to focus on complex problem-solving without the constraints of traditional infrastructure. AWS HPC solutions include Elastic Fabric Adapter (EFA) for low-latency, high-bandwidth networking, AWS Batch for scaling computing jobs, AWS ParallelCluster for simplified cluster deployment, and Amazon FSx for high-performance file systems. These services collectively provide a flexible and scalable environment tailored to diverse HPC workloads.
  • 12
    AWS Elastic Fabric Adapter (EFA)
    Elastic Fabric Adapter (EFA) is a network interface for Amazon EC2 instances that enables customers to run applications requiring high levels of inter-node communications at scale on AWS. Its custom-built operating system (OS) bypass hardware interface enhances the performance of inter-instance communications, which is critical to scaling these applications. With EFA, High-Performance Computing (HPC) applications using the Message Passing Interface (MPI) and Machine Learning (ML) applications using NVIDIA Collective Communications Library (NCCL) can scale to thousands of CPUs or GPUs. As a result, you get the application performance of on-premises HPC clusters with the on-demand elasticity and flexibility of the AWS cloud. EFA is available as an optional EC2 networking feature that you can enable on any supported EC2 instance at no additional cost. Plus, it works with the most commonly used interfaces, APIs, and libraries for inter-node communications.
  • 13
    AWS ParallelCluster
    AWS ParallelCluster is an open-source cluster management tool that simplifies the deployment and management of High-Performance Computing (HPC) clusters on AWS. It automates the setup of required resources, including compute nodes, a shared filesystem, and a job scheduler, supporting multiple instance types and job submission queues. Users can interact with ParallelCluster through a graphical user interface, command-line interface, or API, enabling flexible cluster configuration and management. The tool integrates with job schedulers like AWS Batch and Slurm, facilitating seamless migration of existing HPC workloads to the cloud with minimal modifications. AWS ParallelCluster is available at no additional charge; users only pay for the AWS resources consumed by their applications. With AWS ParallelCluster, you can use a simple text file to model, provision, and dynamically scale the resources needed for your applications in an automated and secure manner.
  • 14
    Amazon EC2 G4 Instances
    Amazon EC2 G4 instances are optimized for machine learning inference and graphics-intensive applications. It offers a choice between NVIDIA T4 GPUs (G4dn) and AMD Radeon Pro V520 GPUs (G4ad). G4dn instances combine NVIDIA T4 GPUs with custom Intel Cascade Lake CPUs, providing a balance of compute, memory, and networking resources. These instances are ideal for deploying machine learning models, video transcoding, game streaming, and graphics rendering. G4ad instances, featuring AMD Radeon Pro V520 GPUs and 2nd-generation AMD EPYC processors, deliver cost-effective solutions for graphics workloads. Both G4dn and G4ad instances support Amazon Elastic Inference, allowing users to attach low-cost GPU-powered inference acceleration to Amazon EC2 and reduce deep learning inference costs. They are available in various sizes to accommodate different performance needs and are integrated with AWS services such as Amazon SageMaker, Amazon ECS, and Amazon EKS.
  • 15
    NVIDIA NGC
    NVIDIA GPU Cloud (NGC) is a GPU-accelerated cloud platform optimized for deep learning and scientific computing. NGC manages a catalog of fully integrated and optimized deep learning framework containers that take full advantage of NVIDIA GPUs in both single GPU and multi-GPU configurations. NVIDIA train, adapt, and optimize (TAO) is an AI-model-adaptation platform that simplifies and accelerates the creation of enterprise AI applications and services. By fine-tuning pre-trained models with custom data through a UI-based, guided workflow, enterprises can produce highly accurate models in hours rather than months, eliminating the need for large training runs and deep AI expertise. Looking to get started with containers and models on NGC? This is the place to start. Private Registries from NGC allow you to secure, manage, and deploy your own assets to accelerate your journey to AI.
  • Previous
  • You're on page 1
  • Next