Best HPC Software - Page 2

Compare the Top HPC Software as of August 2025 - Page 2

HPC Clear Filters
  • 1
    NVIDIA Modulus
    NVIDIA Modulus is a neural network framework that blends the power of physics in the form of governing partial differential equations (PDEs) with data to build high-fidelity, parameterized surrogate models with near-real-time latency. Whether you’re looking to get started with AI-driven physics problems or designing digital twin models for complex non-linear, multi-physics systems, NVIDIA Modulus can support your work. Offers building blocks for developing physics machine learning surrogate models that combine both physics and data. The framework is generalizable to different domains and use cases—from engineering simulations to life sciences and from forward simulations to inverse/data assimilation problems. Provides parameterized system representation that solves for multiple scenarios in near real time, letting you train once offline to infer in real time repeatedly.
  • 2
    Nimbix Supercomputing Suite
    The Nimbix Supercomputing Suite is a set of flexible and secure as-a-service high-performance computing (HPC) solutions. This as-a-service model for HPC, AI, and Quantum in the cloud provides customers with access to one of the broadest HPC and supercomputing portfolios, from hardware to bare metal-as-a-service to the democratization of advanced computing in the cloud across public and private data centers. Nimbix Supercomputing Suite allows you access to HyperHub Application Marketplace, our high-performance marketplace with over 1,000 applications and workflows. Leverage powerful dedicated BullSequana HPC servers as bare metal-as-a-service for the best of infrastructure and on-demand scalability, convenience, and agility. Federated supercomputing-as-a-service offers a unified service console to manage all compute zones and regions in a public or private HPC, AI, and supercomputing federation.
  • 3
    NVIDIA DGX Cloud
    NVIDIA DGX Cloud offers a fully managed, end-to-end AI platform that leverages the power of NVIDIA’s advanced hardware and cloud computing services. This platform allows businesses and organizations to scale AI workloads seamlessly, providing tools for machine learning, deep learning, and high-performance computing (HPC). DGX Cloud integrates seamlessly with leading cloud providers, delivering the performance and flexibility required to handle the most demanding AI applications. This service is ideal for businesses looking to enhance their AI capabilities without the need to manage physical infrastructure.
  • 4
    Kao Data

    Kao Data

    Kao Data

    Kao Data leads the industry, pioneering the development and operation of data centres engineered for AI and advanced computing. With a hyperscale-inspired and industrial scale platform, we provide our customers with a secure, scalable and sustainable home for their compute. Kao Data leads the industry in pioneering the development and operation of data centres engineered for AI and advanced computing. With our Harlow campus the home for a variety of mission-critical HPC deployments - we are the UK’s number one choice for power-intensive, high density, GPU-powered computing. With rapid on-ramps into all major cloud providers, we can make your hybrid AI and HPC ambitions a reality.
  • 5
    Fuzzball
    Fuzzball accelerates innovation for researchers and scientists by eliminating the burdens of infrastructure provisioning and management. Fuzzball streamlines and optimizes high-performance computing (HPC) workload design and execution. A user-friendly GUI for designing, editing, and executing HPC jobs. Comprehensive control and automation of all HPC tasks via CLI. Automated data ingress and egress with full compliance logs. Native integration with GPUs and both on-prem and cloud storage on-prem and cloud storage. Human-readable, portable workflow files that execute anywhere. CIQ’s Fuzzball modernizes traditional HPC with an API-first, container-optimized architecture. Operating on Kubernetes, it provides all the security, performance, stability, and convenience found in modern software and infrastructure. Fuzzball not only abstracts the infrastructure layer but also automates the orchestration of complex workflows, driving greater efficiency and collaboration.
  • 6
    Amazon EC2 P5 Instances
    Amazon Elastic Compute Cloud (Amazon EC2) P5 instances, powered by NVIDIA H100 Tensor Core GPUs, and P5e and P5en instances powered by NVIDIA H200 Tensor Core GPUs deliver the highest performance in Amazon EC2 for deep learning and high-performance computing applications. They help you accelerate your time to solution by up to 4x compared to previous-generation GPU-based EC2 instances, and reduce the cost to train ML models by up to 40%. These instances help you iterate on your solutions at a faster pace and get to market more quickly. You can use P5, P5e, and P5en instances for training and deploying increasingly complex large language models and diffusion models powering the most demanding generative artificial intelligence applications. These applications include question-answering, code generation, video and image generation, and speech recognition. You can also use these instances to deploy demanding HPC applications at scale for pharmaceutical discovery.
  • 7
    Amazon EC2 UltraClusters
    Amazon EC2 UltraClusters enable you to scale to thousands of GPUs or purpose-built machine learning accelerators, such as AWS Trainium, providing on-demand access to supercomputing-class performance. They democratize supercomputing for ML, generative AI, and high-performance computing developers through a simple pay-as-you-go model without setup or maintenance costs. UltraClusters consist of thousands of accelerated EC2 instances co-located in a given AWS Availability Zone, interconnected using Elastic Fabric Adapter (EFA) networking in a petabit-scale nonblocking network. This architecture offers high-performance networking and access to Amazon FSx for Lustre, a fully managed shared storage built on a high-performance parallel file system, enabling rapid processing of massive datasets with sub-millisecond latencies. EC2 UltraClusters provide scale-out capabilities for distributed ML training and tightly coupled HPC workloads, reducing training times.
  • 8
    AWS HPC

    AWS HPC

    Amazon

    AWS High Performance Computing (HPC) services empower users to execute large-scale simulations and deep learning workloads in the cloud, providing virtually unlimited compute capacity, high-performance file systems, and high-throughput networking. This suite of services accelerates innovation by offering a broad range of cloud-based tools, including machine learning and analytics, enabling rapid design and testing of new products. Operational efficiency is maximized through on-demand access to compute resources, allowing users to focus on complex problem-solving without the constraints of traditional infrastructure. AWS HPC solutions include Elastic Fabric Adapter (EFA) for low-latency, high-bandwidth networking, AWS Batch for scaling computing jobs, AWS ParallelCluster for simplified cluster deployment, and Amazon FSx for high-performance file systems. These services collectively provide a flexible and scalable environment tailored to diverse HPC workloads.
  • 9
    AWS Elastic Fabric Adapter (EFA)
    Elastic Fabric Adapter (EFA) is a network interface for Amazon EC2 instances that enables customers to run applications requiring high levels of inter-node communications at scale on AWS. Its custom-built operating system (OS) bypass hardware interface enhances the performance of inter-instance communications, which is critical to scaling these applications. With EFA, High-Performance Computing (HPC) applications using the Message Passing Interface (MPI) and Machine Learning (ML) applications using NVIDIA Collective Communications Library (NCCL) can scale to thousands of CPUs or GPUs. As a result, you get the application performance of on-premises HPC clusters with the on-demand elasticity and flexibility of the AWS cloud. EFA is available as an optional EC2 networking feature that you can enable on any supported EC2 instance at no additional cost. Plus, it works with the most commonly used interfaces, APIs, and libraries for inter-node communications.
  • 10
    AWS ParallelCluster
    AWS ParallelCluster is an open-source cluster management tool that simplifies the deployment and management of High-Performance Computing (HPC) clusters on AWS. It automates the setup of required resources, including compute nodes, a shared filesystem, and a job scheduler, supporting multiple instance types and job submission queues. Users can interact with ParallelCluster through a graphical user interface, command-line interface, or API, enabling flexible cluster configuration and management. The tool integrates with job schedulers like AWS Batch and Slurm, facilitating seamless migration of existing HPC workloads to the cloud with minimal modifications. AWS ParallelCluster is available at no additional charge; users only pay for the AWS resources consumed by their applications. With AWS ParallelCluster, you can use a simple text file to model, provision, and dynamically scale the resources needed for your applications in an automated and secure manner.
  • 11
    Amazon EC2 G4 Instances
    Amazon EC2 G4 instances are optimized for machine learning inference and graphics-intensive applications. It offers a choice between NVIDIA T4 GPUs (G4dn) and AMD Radeon Pro V520 GPUs (G4ad). G4dn instances combine NVIDIA T4 GPUs with custom Intel Cascade Lake CPUs, providing a balance of compute, memory, and networking resources. These instances are ideal for deploying machine learning models, video transcoding, game streaming, and graphics rendering. G4ad instances, featuring AMD Radeon Pro V520 GPUs and 2nd-generation AMD EPYC processors, deliver cost-effective solutions for graphics workloads. Both G4dn and G4ad instances support Amazon Elastic Inference, allowing users to attach low-cost GPU-powered inference acceleration to Amazon EC2 and reduce deep learning inference costs. They are available in various sizes to accommodate different performance needs and are integrated with AWS services such as Amazon SageMaker, Amazon ECS, and Amazon EKS.
  • 12
    QumulusAI

    QumulusAI

    QumulusAI

    QumulusAI delivers supercomputing without constraint, combining scalable HPC with grid-independent data centers to break bottlenecks and power the future of AI. QumulusAI is universalizing access to AI supercomputing, removing the constraints of legacy HPC and delivering the scalable, high-performance computing AI demands today. And tomorrow too. No virtualization overhead, no noisy neighbors, just dedicated, direct access to AI servers optimized with NVIDIA’s latest GPUs (H200) and Intel/AMD CPUs. QumulusAI offers HPC infrastructure uniquely configured around your specific workloads, instead of legacy providers’ one-size-fits-all approach. We collaborate with you through design, deployment, to ongoing optimization, adapting as your AI projects evolve, so you get exactly what you need at each step. We own the entire stack. That means better performance, greater control, and more predictable costs than with other providers who coordinate with third-party vendors.
  • 13
    FieldView

    FieldView

    Intelligent Light

    Over the past two decades, software technologies have advanced greatly and HPC computing has scaled by orders of magnitude. Our human ability to comprehend simulation results has remained the same. Simply making plots and movies in the traditional way does not scale when dealing with multi-billion cell meshes or ten’s of thousands of timesteps. Automated solution assessment is accelerated when features and quantitative properties can be produced directly via eigen analysis or machine learning. Easy-to-use industry standard FieldView desktop coupled to the powerful VisIt Prime backend.
  • 14
    NVIDIA NGC
    NVIDIA GPU Cloud (NGC) is a GPU-accelerated cloud platform optimized for deep learning and scientific computing. NGC manages a catalog of fully integrated and optimized deep learning framework containers that take full advantage of NVIDIA GPUs in both single GPU and multi-GPU configurations. NVIDIA train, adapt, and optimize (TAO) is an AI-model-adaptation platform that simplifies and accelerates the creation of enterprise AI applications and services. By fine-tuning pre-trained models with custom data through a UI-based, guided workflow, enterprises can produce highly accurate models in hours rather than months, eliminating the need for large training runs and deep AI expertise. Looking to get started with containers and models on NGC? This is the place to start. Private Registries from NGC allow you to secure, manage, and deploy your own assets to accelerate your journey to AI.
  • 15
    Bright Cluster Manager
    NVIDIA Bright Cluster Manager offers fast deployment and end-to-end management for heterogeneous high-performance computing (HPC) and AI server clusters at the edge, in the data center, and in multi/hybrid-cloud environments. It automates provisioning and administration for clusters ranging in size from a couple of nodes to hundreds of thousands, supports CPU-based and NVIDIA GPU-accelerated systems, and enables orchestration with Kubernetes. Heterogeneous high-performance Linux clusters can be quickly built and managed with NVIDIA Bright Cluster Manager, supporting HPC, machine learning, and analytics applications that span from core to edge to cloud. NVIDIA Bright Cluster Manager is ideal for heterogeneous environments, supporting Arm® and x86-based CPU nodes, and is fully optimized for accelerated computing with NVIDIA GPUs and NVIDIA DGX™ systems.
  • 16
    Moab HPC Suite

    Moab HPC Suite

    Adaptive Computing

    Moab® HPC Suite is a workload and resource orchestration platform that automates the scheduling, managing, monitoring, and reporting of HPC workloads on massive scale. Its patented intelligence engine uses multi-dimensional policies and advanced future modeling to optimize workload start and run times on diverse resources. These policies balance high utilization and throughput goals with competing workload priorities and SLA requirements, thereby accomplishing more work in less time and in the right priority order. Moab HPC Suite optimizes the value and usability of HPC systems while reducing management cost and complexity.