Compare the Top Graph Databases that integrate with Hadoop as of December 2025

This a list of Graph Databases that integrate with Hadoop. Use the filters on the left to add additional filters for products that have integrations with Hadoop. View the products that work with Hadoop in the table below.

What are Graph Databases for Hadoop?

Graph databases are specialized databases designed to store, manage, and query data that is represented as graphs. Unlike traditional relational databases that use tables to store data, graph databases use nodes, edges, and properties to represent and store data. Nodes represent entities (such as people, products, or locations), edges represent relationships between entities, and properties store information about nodes and edges. Graph databases are particularly well-suited for applications that involve complex relationships and interconnected data, such as social networks, recommendation engines, fraud detection, and network analysis. Compare and read user reviews of the best Graph Databases for Hadoop currently available using the table below. This list is updated regularly.

  • 1
    Apache Cassandra

    Apache Cassandra

    Apache Software Foundation

    The Apache Cassandra database is the right choice when you need scalability and high availability without compromising performance. Linear scalability and proven fault-tolerance on commodity hardware or cloud infrastructure make it the perfect platform for mission-critical data. Cassandra's support for replicating across multiple datacenters is best-in-class, providing lower latency for your users and the peace of mind of knowing that you can survive regional outages.
  • 2
    HugeGraph

    HugeGraph

    HugeGraph

    HugeGraph is a fast-speed and highly-scalable graph database. Billions of vertices and edges can be easily stored into and queried from HugeGraph due to its excellent OLTP ability. As compliance to Apache TinkerPop 3 framework, various complicated graph queries can be accomplished through Gremlin (a powerful graph traversal language). Among its features, it provides compliance to Apache TinkerPop 3, supporting Gremlin. Schema Metadata Management, including VertexLabel, EdgeLabel, PropertyKey and IndexLabel. Multi-type Indexes, supporting exact query, range query and complex conditions combination query. Plug-in Backend Store Driver Framework, supporting RocksDB, Cassandra, ScyllaDB, HBase and MySQL now and easy to add other backend store driver if needed. Integration with Hadoop/Spark. HugeGraph relies on the TinkerPop framework, we refer to the storage structure of Titan and the schema definition of DataStax.
  • Previous
  • You're on page 1
  • Next