Compare the Top Fuzz Testing Tools that integrate with GitLab as of July 2025

This a list of Fuzz Testing tools that integrate with GitLab. Use the filters on the left to add additional filters for products that have integrations with GitLab. View the products that work with GitLab in the table below.

What are Fuzz Testing Tools for GitLab?

Fuzz testing tools are automated software tools used to detect bugs and vulnerabilities in computer systems. They generate large amounts of random input data to test the robustness of a system. These tools are commonly used in software development to enhance the quality and security of a product. Fuzz testing tools can be applied to various types of systems, including web applications, mobile apps, and operating systems. They have become an essential part of the testing process in modern software development due to their ability to uncover hidden flaws that traditional testing methods may miss. Compare and read user reviews of the best Fuzz Testing tools for GitLab currently available using the table below. This list is updated regularly.

  • 1
    Peach Fuzzer

    Peach Fuzzer

    Peach Tech

    Peach is a SmartFuzzer that is capable of performing both generation and mutation-based fuzzing. Peach requires the creation of Peach Pit files that define the structure, type information, and relationships in the data to be fuzzed. It additionally allows for the configuration of a fuzzing run including selecting a data transport (publisher), logging interface, etc. Peach has been under active development since 2004 and is in its third major version. Fuzzing continues to be the fastest way to find security issues and test for bugs. Effective hardware fuzzing with Peach will introduce students to the fundamentals of device fuzzing. Peach was designed to fuzz any type of data consumer from servers to embedded devices. Researchers, corporations, and governments already use Peach to find vulnerabilities in hardware. This course will focus on using Peach to target embedded devices and collect information from the device in the event of a crash.
    Starting Price: Free
  • 2
    Fuzzbuzz

    Fuzzbuzz

    Fuzzbuzz

    The Fuzzbuzz workflow is very similar to other CI/CD testing workflows. However, unlike other testing workflows, fuzz testing requires multiple jobs to run simultaneously, which results in a few extra steps. Fuzzbuzz is a fuzz testing platform. We make it trivial for developers to add fuzz tests to their code and run them in CI/CD, helping them catch critical bugs and vulnerabilities before they hit production. Fuzzbuzz completely integrates into your environment, following you from the terminal to CI/CD. Write a fuzz test in your environment and use your own IDE, terminal, or build tools. Push to CI/CD and Fuzzbuzz will automatically start running your fuzz tests against your latest code changes. Get notified when bugs are found through Slack, GitHub, or email. Catch regressions as new changes are automatically tested and compared to previous runs. Code is built and instrumented by Fuzzbuzz as soon as a change is detected.
    Starting Price: Free
  • 3
    Mayhem Code Security
    Thousands of autonomously generated tests run every minute to pinpoint vulnerabilities and guide rapid remediation. Mayhem takes the guesswork out of untested code by autonomously generating test suites that produce actionable results. No need to recompile the code, since Mayhem works with dockerized images. Self-learning ML continually runs thousands of tests per second probing for crashes and defects, so developers can focus on features. Continuous testing runs in the background to surface new defects and increase code coverage. Mayhem delivers a copy/paste reproduction and backtrace for every defect, then prioritizes them based on your risk. See all the results, duplicated and prioritized by what you need to fix now. Mayhem fits into your existing build pipeline and development tools, putting actionable results at your developers' fingertips. No matter what language or tools your team uses.
  • 4
    Code Intelligence

    Code Intelligence

    Code Intelligence

    Our platform uses various security techniques, including coverage-guided and feedback-based fuzz testing, to automatically generate millions of test cases that trigger hard-to-find bugs deep within your application. This white-box approach protects against edge cases and speeds up development. Advanced fuzzing engines generate inputs that maximize code coverage. Powerful bug detectors check for errors during code execution. Uncover true vulnerabilities only. Get the input and stack trace as proof, so you can reliably reproduce errors every time. AI white-box testing uses data from all previous test runs to continuously learn the inner-workings of your application, triggering security-critical bugs with increasingly high precision.
  • Previous
  • You're on page 1
  • Next