Compare the Top Fuzz Testing Tools that integrate with GitHub as of July 2025

This a list of Fuzz Testing tools that integrate with GitHub. Use the filters on the left to add additional filters for products that have integrations with GitHub. View the products that work with GitHub in the table below.

What are Fuzz Testing Tools for GitHub?

Fuzz testing tools are automated software tools used to detect bugs and vulnerabilities in computer systems. They generate large amounts of random input data to test the robustness of a system. These tools are commonly used in software development to enhance the quality and security of a product. Fuzz testing tools can be applied to various types of systems, including web applications, mobile apps, and operating systems. They have become an essential part of the testing process in modern software development due to their ability to uncover hidden flaws that traditional testing methods may miss. Compare and read user reviews of the best Fuzz Testing tools for GitHub currently available using the table below. This list is updated regularly.

  • 1
    Google OSS-Fuzz
    OSS-Fuzz offers continuous fuzzing for open source software. Fuzz testing is a well-known technique for uncovering programming errors in software. Many of these detectable errors, like buffer overflow, can have serious security implications. Google has found thousands of security vulnerabilities and stability bugs by deploying guided in-process fuzzing of Chrome components, and we now want to share that service with the open source community. OSS-Fuzz aims to make common open source software more secure and stable by combining modern fuzzing techniques with scalable, distributed execution. Projects that do not qualify for OSS-Fuzz can run their own instances of ClusterFuzz or ClusterFuzzLite. Currently, OSS-Fuzz supports C/C++, Rust, Go, Python, and Java/JVM code. Other languages supported by LLVM may work too. OSS-Fuzz supports fuzzing x86_64 and i386 builds.
    Starting Price: Free
  • 2
    Fuzzbuzz

    Fuzzbuzz

    Fuzzbuzz

    The Fuzzbuzz workflow is very similar to other CI/CD testing workflows. However, unlike other testing workflows, fuzz testing requires multiple jobs to run simultaneously, which results in a few extra steps. Fuzzbuzz is a fuzz testing platform. We make it trivial for developers to add fuzz tests to their code and run them in CI/CD, helping them catch critical bugs and vulnerabilities before they hit production. Fuzzbuzz completely integrates into your environment, following you from the terminal to CI/CD. Write a fuzz test in your environment and use your own IDE, terminal, or build tools. Push to CI/CD and Fuzzbuzz will automatically start running your fuzz tests against your latest code changes. Get notified when bugs are found through Slack, GitHub, or email. Catch regressions as new changes are automatically tested and compared to previous runs. Code is built and instrumented by Fuzzbuzz as soon as a change is detected.
    Starting Price: Free
  • 3
    APIFuzzer
    APIFuzzer reads your API description and step-by-step fuzzes the fields to validate if your application can cope with the fuzzed parameters, and it does not require coding. Parse API definition from a local file or remote URL. JSON and YAML file format support. All HTTP methods are supported. Fuzzing of the request body, query string, path parameter, and request header is supported. Relies on random mutations and supports CI integration. Generate JUnit XML test report format. Send a request to an alternative URL. Support HTTP basic auth from the configuration. Save the report of the failed test in JSON format into the pre-configured folder.
    Starting Price: Free
  • 4
    Echidna

    Echidna

    Crytic

    Echidna is a Haskell program designed for fuzzing/property-based testing of Ethereum smart contracts. It uses sophisticated grammar-based fuzzing campaigns based on a contract ABI to falsify user-defined predicates or Solidity assertions. We designed Echidna with modularity in mind, so it can be easily extended to include new mutations or test specific contracts in specific cases. Generates inputs tailored to your actual code. Optional corpus collection, mutation and coverage guidance to find deeper bugs. Powered by Slither to extract useful information before the fuzzing campaign. Source code integration to identify which lines are covered after the fuzzing campaign. Interactive terminal UI, text-only or JSON output. Automatic test case minimization for quick triage. Seamless integration into the development workflow. Maximum gas usage reporting of the fuzzing campaign. Support for a complex contract initialization with Etheno and Truffle.
    Starting Price: Free
  • 5
    Mayhem Code Security
    Thousands of autonomously generated tests run every minute to pinpoint vulnerabilities and guide rapid remediation. Mayhem takes the guesswork out of untested code by autonomously generating test suites that produce actionable results. No need to recompile the code, since Mayhem works with dockerized images. Self-learning ML continually runs thousands of tests per second probing for crashes and defects, so developers can focus on features. Continuous testing runs in the background to surface new defects and increase code coverage. Mayhem delivers a copy/paste reproduction and backtrace for every defect, then prioritizes them based on your risk. See all the results, duplicated and prioritized by what you need to fix now. Mayhem fits into your existing build pipeline and development tools, putting actionable results at your developers' fingertips. No matter what language or tools your team uses.
  • 6
    Code Intelligence

    Code Intelligence

    Code Intelligence

    Our platform uses various security techniques, including coverage-guided and feedback-based fuzz testing, to automatically generate millions of test cases that trigger hard-to-find bugs deep within your application. This white-box approach protects against edge cases and speeds up development. Advanced fuzzing engines generate inputs that maximize code coverage. Powerful bug detectors check for errors during code execution. Uncover true vulnerabilities only. Get the input and stack trace as proof, so you can reliably reproduce errors every time. AI white-box testing uses data from all previous test runs to continuously learn the inner-workings of your application, triggering security-critical bugs with increasingly high precision.
  • Previous
  • You're on page 1
  • Next