Compare the Top Event Stream Processing Software that integrates with Redpanda as of October 2025

This a list of Event Stream Processing software that integrates with Redpanda. Use the filters on the left to add additional filters for products that have integrations with Redpanda. View the products that work with Redpanda in the table below.

What is Event Stream Processing Software for Redpanda?

Event stream processing software enables organizations to analyze and process data in real-time as it is generated, providing immediate insights and enabling quick decision-making. This software is designed to handle large volumes of streaming data, such as sensor data, transaction logs, social media feeds, or financial market data. Event stream processing software often includes features like real-time analytics, pattern detection, event filtering, and aggregation to identify trends or anomalies. It is widely used in applications such as fraud detection, predictive maintenance, supply chain management, and real-time analytics. Compare and read user reviews of the best Event Stream Processing software for Redpanda currently available using the table below. This list is updated regularly.

  • 1
    Apache Kafka

    Apache Kafka

    The Apache Software Foundation

    Apache Kafka® is an open-source, distributed streaming platform. Scale production clusters up to a thousand brokers, trillions of messages per day, petabytes of data, hundreds of thousands of partitions. Elastically expand and contract storage and processing. Stretch clusters efficiently over availability zones or connect separate clusters across geographic regions. Process streams of events with joins, aggregations, filters, transformations, and more, using event-time and exactly-once processing. Kafka’s out-of-the-box Connect interface integrates with hundreds of event sources and event sinks including Postgres, JMS, Elasticsearch, AWS S3, and more. Read, write, and process streams of events in a vast array of programming languages.
  • 2
    DeltaStream

    DeltaStream

    DeltaStream

    DeltaStream is a unified serverless stream processing platform that integrates with streaming storage services. Think about it as the compute layer on top of your streaming storage. It provides functionalities of streaming analytics(Stream processing) and streaming databases along with additional features to provide a complete platform to manage, process, secure and share streaming data. DeltaStream provides a SQL based interface where you can easily create stream processing applications such as streaming pipelines, materialized views, microservices and many more. It has a pluggable processing engine and currently uses Apache Flink as its primary stream processing engine. DeltaStream is more than just a query processing layer on top of Kafka or Kinesis. It brings relational database concepts to the data streaming world, including namespacing and role based access control enabling you to securely access, process and share your streaming data regardless of where they are stored.
  • 3
    Pathway

    Pathway

    Pathway

    Pathway is a Python ETL framework for stream processing, real-time analytics, LLM pipelines, and RAG. Pathway comes with an easy-to-use Python API, allowing you to seamlessly integrate your favorite Python ML libraries. Pathway code is versatile and robust: you can use it in both development and production environments, handling both batch and streaming data effectively. The same code can be used for local development, CI/CD tests, running batch jobs, handling stream replays, and processing data streams. Pathway is powered by a scalable Rust engine based on Differential Dataflow and performs incremental computation. Your Pathway code, despite being written in Python, is run by the Rust engine, enabling multithreading, multiprocessing, and distributed computations. All the pipeline is kept in memory and can be easily deployed with Docker and Kubernetes.
  • 4
    Arroyo

    Arroyo

    Arroyo

    Scale from zero to millions of events per second. Arroyo ships as a single, compact binary. Run locally on MacOS or Linux for development, and deploy to production with Docker or Kubernetes. Arroyo is a new kind of stream processing engine, built from the ground up to make real-time easier than batch. Arroyo was designed from the start so that anyone with SQL experience can build reliable, efficient, and correct streaming pipelines. Data scientists and engineers can build end-to-end real-time applications, models, and dashboards, without a separate team of streaming experts. Transform, filter, aggregate, and join data streams by writing SQL, with sub-second results. Your streaming pipelines shouldn't page someone just because Kubernetes decided to reschedule your pods. Arroyo is built to run in modern, elastic cloud environments, from simple container runtimes like Fargate to large, distributed deployments on the Kubernetes logo Kubernetes.
  • Previous
  • You're on page 1
  • Next