Compare the Top Embedding Models that integrate with PyTorch as of July 2025

This a list of Embedding Models that integrate with PyTorch. Use the filters on the left to add additional filters for products that have integrations with PyTorch. View the products that work with PyTorch in the table below.

What are Embedding Models for PyTorch?

Embedding models, accessible via APIs, transform data such as text or images into numerical vector representations that capture semantic relationships. These vectors facilitate efficient similarity searches, clustering, and various AI-driven tasks by positioning related concepts closer together in a continuous space. By preserving contextual meaning, embedding models and embedding APIs help machines understand relationships between words, objects, or other entities. They play a crucial role in enhancing search relevance, recommendation systems, and natural language processing applications. Compare and read user reviews of the best Embedding Models for PyTorch currently available using the table below. This list is updated regularly.

  • 1
    spaCy

    spaCy

    spaCy

    spaCy is designed to help you do real work, build real products, or gather real insights. The library respects your time and tries to avoid wasting it. It's easy to install, and its API is simple and productive. spaCy excels at large-scale information extraction tasks. It's written from the ground up in carefully memory-managed Cython. If your application needs to process entire web dumps, spaCy is the library you want to be using. Since its release in 2015, spaCy has become an industry standard with a huge ecosystem. Choose from a variety of plugins, integrate with your machine learning stack, and build custom components and workflows. Components for named entity recognition, part-of-speech tagging, dependency parsing, sentence segmentation, text classification, lemmatization, morphological analysis, entity linking, and more. Easily extensible with custom components and attributes. Easy model packaging, deployment, and workflow management.
    Starting Price: Free
  • 2
    voyage-3-large
    Voyage AI has unveiled voyage-3-large, a cutting-edge general-purpose and multilingual embedding model that leads across eight evaluated domains, including law, finance, and code, outperforming OpenAI-v3-large and Cohere-v3-English by averages of 9.74% and 20.71%, respectively. Enabled by Matryoshka learning and quantization-aware training, it supports embeddings of 2048, 1024, 512, and 256 dimensions, along with multiple quantization options such as 32-bit floating point, signed and unsigned 8-bit integer, and binary precision, significantly reducing vector database costs with minimal impact on retrieval quality. Notably, voyage-3-large offers a 32K-token context length, surpassing OpenAI's 8K and Cohere's 512 tokens. Evaluations across 100 datasets in diverse domains demonstrate its superior performance, with flexible precision and dimensionality options enabling substantial storage savings without compromising quality.
  • Previous
  • You're on page 1
  • Next