Compare the Top Embedding Models that integrate with OpenAI as of July 2025

This a list of Embedding Models that integrate with OpenAI. Use the filters on the left to add additional filters for products that have integrations with OpenAI. View the products that work with OpenAI in the table below.

What are Embedding Models for OpenAI?

Embedding models, accessible via APIs, transform data such as text or images into numerical vector representations that capture semantic relationships. These vectors facilitate efficient similarity searches, clustering, and various AI-driven tasks by positioning related concepts closer together in a continuous space. By preserving contextual meaning, embedding models and embedding APIs help machines understand relationships between words, objects, or other entities. They play a crucial role in enhancing search relevance, recommendation systems, and natural language processing applications. Compare and read user reviews of the best Embedding Models for OpenAI currently available using the table below. This list is updated regularly.

  • 1
    Azure OpenAI Service
    Apply advanced coding and language models to a variety of use cases. Leverage large-scale, generative AI models with deep understandings of language and code to enable new reasoning and comprehension capabilities for building cutting-edge applications. Apply these coding and language models to a variety of use cases, such as writing assistance, code generation, and reasoning over data. Detect and mitigate harmful use with built-in responsible AI and access enterprise-grade Azure security. Gain access to generative models that have been pretrained with trillions of words. Apply them to new scenarios including language, code, reasoning, inferencing, and comprehension. Customize generative models with labeled data for your specific scenario using a simple REST API. Fine-tune your model's hyperparameters to increase accuracy of outputs. Use the few-shot learning capability to provide the API with examples and achieve more relevant results.
    Starting Price: $0.0004 per 1000 tokens
  • 2
    Arctic Embed 2.0
    Snowflake's Arctic Embed 2.0 introduces multilingual capabilities to its text embedding models, enhancing global-scale retrieval without compromising English performance or scalability. Building upon the robust foundation of previous releases, Arctic Embed 2.0 supports multiple languages, enabling developers to create stream-processing pipelines that incorporate neural networks and complex tasks like tracking, video encoding/decoding, and rendering, facilitating real-time analytics on various data types. The model leverages Matryoshka Representation Learning (MRL) for efficient embedding storage, allowing for significant compression with minimal quality degradation. This advancement ensures that enterprises can handle demanding workloads such as training large-scale models, fine-tuning, real-time inference, and high-performance computing tasks across diverse languages and regions.
    Starting Price: $2 per credit
  • 3
    Neum AI

    Neum AI

    Neum AI

    No one wants their AI to respond with out-of-date information to a customer. ‍Neum AI helps companies have accurate and up-to-date context in their AI applications. Use built-in connectors for data sources like Amazon S3 and Azure Blob Storage, vector stores like Pinecone and Weaviate to set up your data pipelines in minutes. Supercharge your data pipeline by transforming and embedding your data with built-in connectors for embedding models like OpenAI and Replicate, and serverless functions like Azure Functions and AWS Lambda. Leverage role-based access controls to make sure only the right people can access specific vectors. Bring your own embedding models, vector stores and sources. Ask us about how you can even run Neum AI in your own cloud.
  • Previous
  • You're on page 1
  • Next