Best Embedding Models for Google AI Studio

Compare the Top Embedding Models that integrate with Google AI Studio as of October 2025

This a list of Embedding Models that integrate with Google AI Studio. Use the filters on the left to add additional filters for products that have integrations with Google AI Studio. View the products that work with Google AI Studio in the table below.

What are Embedding Models for Google AI Studio?

Embedding models, accessible via APIs, transform data such as text or images into numerical vector representations that capture semantic relationships. These vectors facilitate efficient similarity searches, clustering, and various AI-driven tasks by positioning related concepts closer together in a continuous space. By preserving contextual meaning, embedding models and embedding APIs help machines understand relationships between words, objects, or other entities. They play a crucial role in enhancing search relevance, recommendation systems, and natural language processing applications. Compare and read user reviews of the best Embedding Models for Google AI Studio currently available using the table below. This list is updated regularly.

  • 1
    Vertex AI
    Embedding Models in Vertex AI are designed to convert high-dimensional data, such as text or images, into compact, fixed-size vectors that preserve essential features. These models are crucial for tasks like semantic search, recommendation systems, and natural language processing, where understanding the underlying relationships between data points is vital. By using embeddings, businesses can improve the accuracy and performance of machine learning models by capturing complex patterns in the data. New customers receive $300 in free credits, enabling them to explore the use of embedding models in their AI applications. With embedding models, businesses can enhance the effectiveness of their AI systems, improving results in areas such as search and personalization.
    Starting Price: Free ($300 in free credits)
    View Software
    Visit Website
  • 2
    Gemini Embedding
    Gemini Embedding’s first text model (gemini-embedding-001) is now generally available via the Gemini API and Vertex AI, having held a top spot on the Massive Text Embedding Benchmark Multilingual leaderboard since its experimental launch in March, thanks to superior performance across retrieval, classification, and other embedding tasks compared to both legacy Google and external proprietary models. Exceptionally versatile, it supports over 100 languages with a 2,048‑token input limit and employs the Matryoshka Representation Learning (MRL) technique to let developers choose output dimensions of 3072, 153,6, or 768 for optimal quality, performance, and storage efficiency. Developers can access it through the existing embed_content endpoint in the Gemini API, and while legacy experimental versions will be deprecated later in 2025, migration requires no re‑embedding of existing content.
    Starting Price: $0.15 per 1M input tokens
  • Previous
  • You're on page 1
  • Next