Compare the Top Distributed Databases that integrate with Apache Spark as of December 2025

This a list of Distributed Databases that integrate with Apache Spark. Use the filters on the left to add additional filters for products that have integrations with Apache Spark. View the products that work with Apache Spark in the table below.

What are Distributed Databases for Apache Spark?

Distributed databases store data across multiple physical locations, often across different servers or even geographical regions, allowing for high availability and scalability. Unlike traditional databases, distributed databases divide data and workloads among nodes in a network, providing faster access and load balancing. They are designed to be resilient, with redundancy and data replication ensuring that data remains accessible even if some nodes fail. Distributed databases are essential for applications that require quick access to large volumes of data across multiple locations, such as global eCommerce, finance, and social media. By decentralizing data storage, they support high-performance, fault-tolerant operations that scale with an organization’s needs. Compare and read user reviews of the best Distributed Databases for Apache Spark currently available using the table below. This list is updated regularly.

  • 1
    Apache Cassandra

    Apache Cassandra

    Apache Software Foundation

    The Apache Cassandra database is the right choice when you need scalability and high availability without compromising performance. Linear scalability and proven fault-tolerance on commodity hardware or cloud infrastructure make it the perfect platform for mission-critical data. Cassandra's support for replicating across multiple datacenters is best-in-class, providing lower latency for your users and the peace of mind of knowing that you can survive regional outages.
  • 2
    SingleStore

    SingleStore

    SingleStore

    SingleStore (formerly MemSQL) is a distributed, highly-scalable SQL database that can run anywhere. We deliver maximum performance for transactional and analytical workloads with familiar relational models. SingleStore is a scalable SQL database that ingests data continuously to perform operational analytics for the front lines of your business. Ingest millions of events per second with ACID transactions while simultaneously analyzing billions of rows of data in relational SQL, JSON, geospatial, and full-text search formats. SingleStore delivers ultimate data ingestion performance at scale and supports built in batch loading and real time data pipelines. SingleStore lets you achieve ultra fast query response across both live and historical data using familiar ANSI SQL. Perform ad hoc analysis with business intelligence tools, run machine learning algorithms for real-time scoring, perform geoanalytic queries in real time.
    Starting Price: $0.69 per hour
  • 3
    Apache HBase

    Apache HBase

    The Apache Software Foundation

    Use Apache HBase™ when you need random, realtime read/write access to your Big Data. This project's goal is the hosting of very large tables -- billions of rows X millions of columns -- atop clusters of commodity hardware. Automatic failover support between RegionServers. Easy to use Java API for client access. Thrift gateway and a REST-ful Web service that supports XML, Protobuf, and binary data encoding options. Support for exporting metrics via the Hadoop metrics subsystem to files or Ganglia; or via JMX.
  • 4
    Google Cloud Bigtable
    Google Cloud Bigtable is a fully managed, scalable NoSQL database service for large analytical and operational workloads. Fast and performant: Use Cloud Bigtable as the storage engine that grows with you from your first gigabyte to petabyte-scale for low-latency applications as well as high-throughput data processing and analytics. Seamless scaling and replication: Start with a single node per cluster, and seamlessly scale to hundreds of nodes dynamically supporting peak demand. Replication also adds high availability and workload isolation for live serving apps. Simple and integrated: Fully managed service that integrates easily with big data tools like Hadoop, Dataflow, and Dataproc. Plus, support for the open source HBase API standard makes it easy for development teams to get started.
  • 5
    JanusGraph

    JanusGraph

    JanusGraph

    JanusGraph is a scalable graph database optimized for storing and querying graphs containing hundreds of billions of vertices and edges distributed across a multi-machine cluster. JanusGraph is a project under The Linux Foundation, and includes participants from Expero, Google, GRAKN.AI, Hortonworks, IBM and Amazon. Elastic and linear scalability for a growing data and user base. Data distribution and replication for performance and fault tolerance. Multi-datacenter high availability and hot backups. All functionality is totally free. No need to buy commercial licenses. JanusGraph is fully open source under the Apache 2 license. JanusGraph is a transactional database that can support thousands of concurrent users executing complex graph traversals in real time. Support for ACID and eventual consistency. In addition to online transactional processing (OLTP), JanusGraph supports global graph analytics (OLAP) with its Apache Spark integration.
  • 6
    Apache Kudu

    Apache Kudu

    The Apache Software Foundation

    A Kudu cluster stores tables that look just like tables you're used to from relational (SQL) databases. A table can be as simple as a binary key and value, or as complex as a few hundred different strongly-typed attributes. Just like SQL, every table has a primary key made up of one or more columns. This might be a single column like a unique user identifier, or a compound key such as a (host, metric, timestamp) tuple for a machine time-series database. Rows can be efficiently read, updated, or deleted by their primary key. Kudu's simple data model makes it a breeze to port legacy applications or build new ones, no need to worry about how to encode your data into binary blobs or make sense of a huge database full of hard-to-interpret JSON. Tables are self-describing, so you can use standard tools like SQL engines or Spark to analyze your data. Kudu's APIs are designed to be easy to use.
  • Previous
  • You're on page 1
  • Next