Compare the Top Deep Learning Software for Cloud as of December 2025 - Page 3

  • 1
    DeepPy

    DeepPy

    DeepPy

    DeepPy is a MIT licensed deep learning framework. DeepPy tries to add a touch of zen to deep learning as it. DeepPy relies on CUDArray for most of its calculations. Therefore, you must first install CUDArray. Note that you can choose to install CUDArray without the CUDA back-end which simplifies the installation process.
  • 2
    Cauliflower

    Cauliflower

    Cauliflower

    Whether for a service or a product, whether a snapshot or monitoring over time - Cauliflower processes feedback and comments from various application areas. Using Artificial Intelligence (AI), Cauliflower identifies the most important topics, their relevance, evaluation and relationships. In-house developed machine learning models for the extraction of content and evaluation of sentiment. Intuitive dashboards with filter options and drill-downs. Use included variables for language, weight, ID, time or location. Define your own filter variables in the dropdown. Cauliflower translates the results into a uniform language if required. Define a company-wide language about customer feedback instead of reading it sporadically and quoting individual opinions.
  • 3
    DreamQuark Brain
    AI can be slow, confusing, and costly. Brain empowers wealth managers to make hyper-personalized insights simply and quickly. Serve your clients better and grow smarter with Brain. Turn your data into user-friendly insights in a few clicks to guide your next best action. Brain’s explainable AI gives advisors the reasons behind every recommendation. Use Brain’s CX application or integrate it on your own CX platform and cloud provider. Increase your revenues by predicting which clients will respond best to cross-sell and upsell opportunities. Improve the performance of your campaigns by identifying which clients are likely to take an interest in a product and why. Retain your clients before it’s too late by quickly discovering who is most likely to leave and why. Brain’s explainable AI makes hyper-personalized insights understandable and easier for advisors to act on. Brain simplifies and automates the creation and maintenance of insights, saving you time and money.
  • 4
    Exafunction

    Exafunction

    Exafunction

    Exafunction optimizes your deep learning inference workload, delivering up to a 10x improvement in resource utilization and cost. Focus on building your deep learning application, not on managing clusters and fine-tuning performance. In most deep learning applications, CPU, I/O, and network bottlenecks lead to poor utilization of GPU hardware. Exafunction moves any GPU code to highly utilized remote resources, even spot instances. Your core logic remains an inexpensive CPU instance. Exafunction is battle-tested on applications like large-scale autonomous vehicle simulation. These workloads have complex custom models, require numerical reproducibility, and use thousands of GPUs concurrently. Exafunction supports models from major deep learning frameworks and inference runtimes. Models and dependencies like custom operators are versioned so you can always be confident you’re getting the right results.
  • 5
    Deci

    Deci

    Deci AI

    Easily build, optimize, and deploy fast & accurate models with Deci’s deep learning development platform powered by Neural Architecture Search. Instantly achieve accuracy & runtime performance that outperform SoTA models for any use case and inference hardware. Reach production faster with automated tools. No more endless iterations and dozens of different libraries. Enable new use cases on resource-constrained devices or cut up to 80% of your cloud compute costs. Automatically find accurate & fast architectures tailored for your application, hardware and performance targets with Deci’s NAS based AutoNAC engine. Automatically compile and quantize your models using best-of-breed compilers and quickly evaluate different production settings. Automatically compile and quantize your models using best-of-breed compilers and quickly evaluate different production settings.
  • 6
    Speech2Structure
    When treating a patient, doctors spend on average two-thirds of their time documenting the treatment and far less time on examinations or patient interviews. To allow doctors to spend more time with their patients, Averbis is working on Speech2Structure – a software solution where the documentation is recorded live by voice and structured on-the-fly. Speech2Structure can correctly recognize and resolve many linguistic variations such as negations, suspected diagnoses, diagnoses that have taken place, etc. when recognizing diagnoses. Pathological laboratory values or microbiology results are also converted into corresponding diagnoses. The recorded medications can also provide clues to diagnoses.
  • 7
    Overview

    Overview

    Overview

    Reliable, adaptable computer vision systems for any factory. AI and image capture are integrated into every step of manufacturing. Overview’s inspection systems are built with deep learning technology which allows us to find mistakes more consistently and in a wider variety of situations. Enhanced traceability with remote access and support. Our solutions create a traceable visual record of every unit. You can quickly identify the root cause of production problems and quality issues. Whether you are just digitizing your inspection or have an existing vision system that is underperforming, Overview has a solution that can drive waste out of your manufacturing operations. Demo the Snap platform to see how we improve your factory efficiency. Deep learning automated inspection solutions radically improve defect detection. Improved yields, better traceability, easy setup, and outstanding support.
  • 8
    CerebrumX AI Powered Connected Vehicle Data Platform
    CerebrumX AI Powered Connected Vehicle Data Platform - ADLP is the industry’s first AI-driven Augmented Deep Learning Connected Vehicle Data Platform that collects & homogenizes this vehicle data from millions of vehicles, in real-time, and enriches it with augmented data to generate deep & contextual insights. ADLP provides a plug-in to manage and maintain Data Privacy, Anonymization and Consent Management at the source, to ensure that any personal information is treated based on the user consent. CerebrumX takes pride in bringing privacy to everything it does, going beyond just compliance with its white-label app and web solution.
  • 9
    AWS Inferentia
    AWS Inferentia accelerators are designed by AWS to deliver high performance at the lowest cost for your deep learning (DL) inference applications. The first-generation AWS Inferentia accelerator powers Amazon Elastic Compute Cloud (Amazon EC2) Inf1 instances, which deliver up to 2.3x higher throughput and up to 70% lower cost per inference than comparable GPU-based Amazon EC2 instances. Many customers, including Airbnb, Snap, Sprinklr, Money Forward, and Amazon Alexa, have adopted Inf1 instances and realized its performance and cost benefits. The first-generation Inferentia has 8 GB of DDR4 memory per accelerator and also features a large amount of on-chip memory. Inferentia2 offers 32 GB of HBM2e per accelerator, increasing the total memory by 4x and memory bandwidth by 10x over Inferentia.
  • 10
    AWS Deep Learning AMIs
    AWS Deep Learning AMIs (DLAMI) provides ML practitioners and researchers with a curated and secure set of frameworks, dependencies, and tools to accelerate deep learning in the cloud. Built for Amazon Linux and Ubuntu, Amazon Machine Images (AMIs) come preconfigured with TensorFlow, PyTorch, Apache MXNet, Chainer, Microsoft Cognitive Toolkit (CNTK), Gluon, Horovod, and Keras, allowing you to quickly deploy and run these frameworks and tools at scale. Develop advanced ML models at scale to develop autonomous vehicle (AV) technology safely by validating models with millions of supported virtual tests. Accelerate the installation and configuration of AWS instances, and speed up experimentation and evaluation with up-to-date frameworks and libraries, including Hugging Face Transformers. Use advanced analytics, ML, and deep learning capabilities to identify trends and make predictions from raw, disparate health data.
  • 11
    AWS Neuron

    AWS Neuron

    Amazon Web Services

    It supports high-performance training on AWS Trainium-based Amazon Elastic Compute Cloud (Amazon EC2) Trn1 instances. For model deployment, it supports high-performance and low-latency inference on AWS Inferentia-based Amazon EC2 Inf1 instances and AWS Inferentia2-based Amazon EC2 Inf2 instances. With Neuron, you can use popular frameworks, such as TensorFlow and PyTorch, and optimally train and deploy machine learning (ML) models on Amazon EC2 Trn1, Inf1, and Inf2 instances with minimal code changes and without tie-in to vendor-specific solutions. AWS Neuron SDK, which supports Inferentia and Trainium accelerators, is natively integrated with PyTorch and TensorFlow. This integration ensures that you can continue using your existing workflows in these popular frameworks and get started with only a few lines of code changes. For distributed model training, the Neuron SDK supports libraries, such as Megatron-LM and PyTorch Fully Sharded Data Parallel (FSDP).
  • 12
    SynapseAI

    SynapseAI

    Habana Labs

    Like our accelerator hardware, was purpose-designed to optimize deep learning performance, efficiency, and most importantly for developers, ease of use. With support for popular frameworks and models, the goal of SynapseAI is to facilitate ease and speed for developers, using the code and tools they use regularly and prefer. In essence, SynapseAI and its many tools and support are designed to meet deep learning developers where you are — enabling you to develop what and how you want. Habana-based deep learning processors, preserve software investments, and make it easy to build new models— for both training and deployment of the numerous and growing models defining deep learning, generative AI and large language models.
  • 13
    Determined AI

    Determined AI

    Determined AI

    Distributed training without changing your model code, determined takes care of provisioning machines, networking, data loading, and fault tolerance. Our open source deep learning platform enables you to train models in hours and minutes, not days and weeks. Instead of arduous tasks like manual hyperparameter tuning, re-running faulty jobs, and worrying about hardware resources. Our distributed training implementation outperforms the industry standard, requires no code changes, and is fully integrated with our state-of-the-art training platform. With built-in experiment tracking and visualization, Determined records metrics automatically, makes your ML projects reproducible and allows your team to collaborate more easily. Your researchers will be able to build on the progress of their team and innovate in their domain, instead of fretting over errors and infrastructure.
  • 14
    Autogon

    Autogon

    Autogon

    Autogon is a leading AI and machine learning company, that simplifies complex technology to empower businesses with accessible, cutting-edge solutions for data-driven decisions and global competitiveness. Discover the empowering potential of Autogon models as they enable industries to leverage the power of AI, fostering innovation and fueling growth across diverse sectors. Experience the future of AI with Autogon Qore, your all-in-one solution for image classification, text generation, visual Q&A, sentiment analysis, voice cloning, and more. Empower your business with cutting-edge AI capabilities and innovation. Make informed decisions, streamline operations, and drive growth without the need for extensive technical expertise. Empower engineers, analysts, and scientists to harness the full potential of artificial intelligence and machine learning for their projects and research. Create custom software using clear APIs and integration SDKs.
  • 15
    Hive AutoML
    Build and deploy deep learning models for custom use cases. Our automated machine learning process allows customers to create powerful AI solutions built on our best-in-class models and tailored to the specific challenges they face. Digital platforms can quickly create models specifically made to fit their guidelines and needs. Build large language models for specialized use cases such as customer and technical support bots. Create image classification models to better understand image libraries for search, organization, and more.
  • 16
    Amazon EC2 P5 Instances
    Amazon Elastic Compute Cloud (Amazon EC2) P5 instances, powered by NVIDIA H100 Tensor Core GPUs, and P5e and P5en instances powered by NVIDIA H200 Tensor Core GPUs deliver the highest performance in Amazon EC2 for deep learning and high-performance computing applications. They help you accelerate your time to solution by up to 4x compared to previous-generation GPU-based EC2 instances, and reduce the cost to train ML models by up to 40%. These instances help you iterate on your solutions at a faster pace and get to market more quickly. You can use P5, P5e, and P5en instances for training and deploying increasingly complex large language models and diffusion models powering the most demanding generative artificial intelligence applications. These applications include question-answering, code generation, video and image generation, and speech recognition. You can also use these instances to deploy demanding HPC applications at scale for pharmaceutical discovery.
  • 17
    Amazon EC2 Trn2 Instances
    Amazon EC2 Trn2 instances, powered by AWS Trainium2 chips, are purpose-built for high-performance deep learning training of generative AI models, including large language models and diffusion models. They offer up to 50% cost-to-train savings over comparable Amazon EC2 instances. Trn2 instances support up to 16 Trainium2 accelerators, providing up to 3 petaflops of FP16/BF16 compute power and 512 GB of high-bandwidth memory. To facilitate efficient data and model parallelism, Trn2 instances feature NeuronLink, a high-speed, nonblocking interconnect, and support up to 1600 Gbps of second-generation Elastic Fabric Adapter (EFAv2) network bandwidth. They are deployed in EC2 UltraClusters, enabling scaling up to 30,000 Trainium2 chips interconnected with a nonblocking petabit-scale network, delivering 6 exaflops of compute performance. The AWS Neuron SDK integrates natively with popular machine learning frameworks like PyTorch and TensorFlow.
  • 18
    Amazon EC2 G4 Instances
    Amazon EC2 G4 instances are optimized for machine learning inference and graphics-intensive applications. It offers a choice between NVIDIA T4 GPUs (G4dn) and AMD Radeon Pro V520 GPUs (G4ad). G4dn instances combine NVIDIA T4 GPUs with custom Intel Cascade Lake CPUs, providing a balance of compute, memory, and networking resources. These instances are ideal for deploying machine learning models, video transcoding, game streaming, and graphics rendering. G4ad instances, featuring AMD Radeon Pro V520 GPUs and 2nd-generation AMD EPYC processors, deliver cost-effective solutions for graphics workloads. Both G4dn and G4ad instances support Amazon Elastic Inference, allowing users to attach low-cost GPU-powered inference acceleration to Amazon EC2 and reduce deep learning inference costs. They are available in various sizes to accommodate different performance needs and are integrated with AWS services such as Amazon SageMaker, Amazon ECS, and Amazon EKS.
  • 19
    NVIDIA DeepStream SDK
    NVIDIA's DeepStream SDK is a comprehensive streaming analytics toolkit based on GStreamer, designed for AI-based multi-sensor processing, including video, audio, and image understanding. It enables developers to create stream-processing pipelines that incorporate neural networks and complex tasks like tracking, video encoding/decoding, and rendering, facilitating real-time analytics on various data types. DeepStream is integral to NVIDIA Metropolis, a platform for building end-to-end services that transform pixel and sensor data into actionable insights. The SDK offers a powerful and flexible environment suitable for a wide range of industries, supporting multiple programming options such as C/C++, Python, and Graph Composer's intuitive UI. It allows for real-time insights by understanding rich, multi-modal sensor data at the edge and supports managed AI services through deployment in cloud-native containers orchestrated with Kubernetes.
  • 20
    Qualcomm Cloud AI SDK
    The Qualcomm Cloud AI SDK is a comprehensive software suite designed to optimize trained deep learning models for high-performance inference on Qualcomm Cloud AI 100 accelerators. It supports a wide range of AI frameworks, including TensorFlow, PyTorch, and ONNX, enabling developers to compile, optimize, and execute models efficiently. The SDK provides tools for model onboarding, tuning, and deployment, facilitating end-to-end workflows from model preparation to production deployment. Additionally, it offers resources such as model recipes, tutorials, and code samples to assist developers in accelerating AI development. It ensures seamless integration with existing systems, allowing for scalable and efficient AI inference in cloud environments. By leveraging the Cloud AI SDK, developers can achieve enhanced performance and efficiency in their AI applications.
  • 21
    Luminal

    Luminal

    Luminal

    Luminal is a machine-learning framework built for speed, simplicity, and composability, focusing on static graphs and compiler-based optimization to deliver high performance even for complex neural networks. It compiles models into minimal “primops” (only 12 primitive operations) and then applies compiler passes to replace those with device-specific optimized kernels, enabling efficient execution on GPU or other backends. It supports modules (building blocks of networks with a standard forward API) and the GraphTensor interface (typed tensors and graphs at compile time) for model definition and execution. Luminal’s core remains intentionally small and hackable, with extensibility via external compilers for datatypes, devices, training, quantization, and more. Quick-start guidance shows how to clone the repo, build a “Hello World” example, or run a larger model like LLaMA 3 using GPU features.
  • 22
    NVIDIA NGC
    NVIDIA GPU Cloud (NGC) is a GPU-accelerated cloud platform optimized for deep learning and scientific computing. NGC manages a catalog of fully integrated and optimized deep learning framework containers that take full advantage of NVIDIA GPUs in both single GPU and multi-GPU configurations. NVIDIA train, adapt, and optimize (TAO) is an AI-model-adaptation platform that simplifies and accelerates the creation of enterprise AI applications and services. By fine-tuning pre-trained models with custom data through a UI-based, guided workflow, enterprises can produce highly accurate models in hours rather than months, eliminating the need for large training runs and deep AI expertise. Looking to get started with containers and models on NGC? This is the place to start. Private Registries from NGC allow you to secure, manage, and deploy your own assets to accelerate your journey to AI.
  • 23
    VisionPro Deep Learning
    VisionPro Deep Learning is the best-in-class deep learning-based image analysis software designed for factory automation. Its field-tested algorithms are optimized specifically for machine vision, with a graphical user interface that simplifies neural network training without compromising performance. VisionPro Deep Learning solves complex applications that are too challenging for traditional machine vision alone, while providing a consistency and speed that aren’t possible with human inspection. When combined with VisionPro’s rule-based vision libraries, automation engineers can easily choose the best the tool for the task at hand. VisionPro Deep Learning combines a comprehensive machine vision tool library with advanced deep learning tools inside a common development and deployment framework. It simplifies the development of highly variable vision applications.
  • 24
    Image Memorability
    AI at your fingertips to predict the effectiveness of your images and visual campaigns. Today, people are exposed to a huge amount of images and information. To stand out, brands need to leave their mark. Increasing the investment in online and offline advertising is not enough. It is necessary to test the effectiveness of visual campaigns before launch. Image Memorability can tell you which of your images are more powerful and memorable. Neosperience Image Memorability is the tool to make your brand and product images outstanding. Using proprietary deep learning models, Neosperience Image Memorability combines quantitative and qualitative analysis to evaluate the effectiveness of images among a specific audience segment. Get quantitative data to objectively measure the memorability and impact of your images in just a few seconds. Find out which areas of the image attract people's attention and will be remembered.
  • 25
    Produvia

    Produvia

    Produvia

    Produvia is a serverless machine-learning development service. Partner with Produvia to develop and deploy machine models using serverless cloud infrastructure. Fortune 500 companies and Global 500 enterprises partner with Produvia to develop and deploy machine learning models using modern cloud infrastructure. At Produvia, we use state-of-the-art methods in machine learning and deep learning technologies to solve business problems. Organizations overspend on infrastructure costs. Modern organizations use serverless architectures to reduce server costs. Organizations are held back by complex servers and legacy code. Modern organizations use machine learning technologies to rewrite technology stacks. Companies hire software developers to write code. Modern companies use machine learning to develop software that writes code.
    Starting Price: $1,000 per month
  • 26
    ConvNetJS

    ConvNetJS

    ConvNetJS

    ConvNetJS is a Javascript library for training deep learning models (neural networks) entirely in your browser. Open a tab and you're training. No software requirements, no compilers, no installations, no GPUs, no sweat. The library allows you to formulate and solve neural networks in Javascript, and was originally written by @karpathy. However, the library has since been extended by contributions from the community and more are warmly welcome. The fastest way to obtain the library in a plug-and-play way if you don't care about developing is through this link to convnet-min.js, which contains the minified library. Alternatively, you can also choose to download the latest release of the library from Github. The file you are probably most interested in is build/convnet-min.js, which contains the entire library. To use it, create a bare-bones index.html file in some folder and copy build/convnet-min.js to the same folder.
  • 27
    Pienso

    Pienso

    Pienso

    Creating a topic model from scratch takes advanced programming know-how. This expertise is expensive, and supersedes the knowledge that matters most: familiarity with your data. Labeling your own training data is slow, tedious, and costly. Farming it out to workers paid a low wage is faster and cheaper, but compromises accuracy and nuance. Either approach leaves you stuck with a fixed taxonomy that's hard to evolve. It’s time to stop tagging. Free subject matter experts to model and analyze their own data. You've got mountains of text data, filled with insights just waiting to be mined. And Pienso is here to help. Pienso is designed to train models with your own data, because we know that works best. Whether your data is unstructured or semi-structured, long or short, Pienso can help you parse it into insight.
  • 28
    Concentric

    Concentric

    Concentric AI

    Take control of your data with zero-trust access governance. Locate, risk assess, and protect business-critical content. Protect private and regulated data. Meet regulatory mandates for financial information, privacy and right-to-be-forgotten. Concentric provides agentless connectivity to a wide variety of data repositories so you can govern access to your data wherever it resides. We process both structured and unstructured data in the cloud or on-premises. We also integrate with popular data classification frameworks, like Microsoft Information Protection, so you can enjoy better coverage and more accurate classification results throughout your security stack. If you don’t see what you need on our list, let us know. Our professional services team will make quick work of getting your data connected.
  • 29
    Abacus.AI

    Abacus.AI

    Abacus.AI

    Abacus.AI is the world's first end-to-end autonomous AI platform that enables real-time deep learning at scale for common enterprise use-cases. Apply our innovative neural architecture search techniques to train custom deep learning models and deploy them on our end to end DLOps platform. Our AI engine will increase your user engagement by at least 30% with personalized recommendations. We generate recommendations that are truly personalized to individual preferences which means more user interaction and conversion. Don't waste time in dealing with data hassles. We will automatically create your data pipelines and retrain your models. We use generative modeling to produce recommendations that means even with very little data about a particular user/item you won't have a cold start.
  • 30
    Strong Analytics

    Strong Analytics

    Strong Analytics

    Our platforms provide a trusted foundation upon which to design, build, and deploy custom machine learning and artificial intelligence solutions. Build next-best-action applications that learn, adapt, and optimize using reinforcement-learning based algorithms. Custom, continuously-improving deep learning vision models to solve your unique challenges. Predict the future using state-of-the-art forecasts. Enable smarter decisions throughout your organization with cloud based tools to monitor and analyze. The process of taking a modern machine learning application from research and ad-hoc code to a robust, scalable platform remains a key challenge for experienced data science and engineering teams. Strong ML simplifies this process with a complete suite of tools to manage, deploy, and monitor your machine learning applications.