Compare the Top Deep Learning Software that integrates with Hugging Face as of September 2025

This a list of Deep Learning software that integrates with Hugging Face. Use the filters on the left to add additional filters for products that have integrations with Hugging Face. View the products that work with Hugging Face in the table below.

What is Deep Learning Software for Hugging Face?

Deep learning software provides tools and frameworks for developing, training, and deploying artificial neural networks, particularly for complex tasks such as image and speech recognition, natural language processing (NLP), and autonomous systems. These platforms leverage large datasets and powerful computational resources to enable machines to learn patterns and make predictions. Popular deep learning software includes frameworks like TensorFlow, PyTorch, Keras, and Caffe, which offer pre-built models, libraries, and tools for designing custom models. Deep learning software is essential for industries that require advanced AI solutions, including healthcare, finance, automotive, and entertainment. Compare and read user reviews of the best Deep Learning software for Hugging Face currently available using the table below. This list is updated regularly.

  • 1
    OpenVINO
    The Intel® Distribution of OpenVINO™ toolkit is an open-source AI development toolkit that accelerates inference across Intel hardware platforms. Designed to streamline AI workflows, it allows developers to deploy optimized deep learning models for computer vision, generative AI, and large language models (LLMs). With built-in tools for model optimization, the platform ensures high throughput and lower latency, reducing model footprint without compromising accuracy. OpenVINO™ is perfect for developers looking to deploy AI across a range of environments, from edge devices to cloud servers, ensuring scalability and performance across Intel architectures.
    Starting Price: Free
  • 2
    Amazon EC2 Trn2 Instances
    Amazon EC2 Trn2 instances, powered by AWS Trainium2 chips, are purpose-built for high-performance deep learning training of generative AI models, including large language models and diffusion models. They offer up to 50% cost-to-train savings over comparable Amazon EC2 instances. Trn2 instances support up to 16 Trainium2 accelerators, providing up to 3 petaflops of FP16/BF16 compute power and 512 GB of high-bandwidth memory. To facilitate efficient data and model parallelism, Trn2 instances feature NeuronLink, a high-speed, nonblocking interconnect, and support up to 1600 Gbps of second-generation Elastic Fabric Adapter (EFAv2) network bandwidth. They are deployed in EC2 UltraClusters, enabling scaling up to 30,000 Trainium2 chips interconnected with a nonblocking petabit-scale network, delivering 6 exaflops of compute performance. The AWS Neuron SDK integrates natively with popular machine learning frameworks like PyTorch and TensorFlow.
  • 3
    Qualcomm Cloud AI SDK
    The Qualcomm Cloud AI SDK is a comprehensive software suite designed to optimize trained deep learning models for high-performance inference on Qualcomm Cloud AI 100 accelerators. It supports a wide range of AI frameworks, including TensorFlow, PyTorch, and ONNX, enabling developers to compile, optimize, and execute models efficiently. The SDK provides tools for model onboarding, tuning, and deployment, facilitating end-to-end workflows from model preparation to production deployment. Additionally, it offers resources such as model recipes, tutorials, and code samples to assist developers in accelerating AI development. It ensures seamless integration with existing systems, allowing for scalable and efficient AI inference in cloud environments. By leveraging the Cloud AI SDK, developers can achieve enhanced performance and efficiency in their AI applications.
  • Previous
  • You're on page 1
  • Next