Best Data Warehouse Software for Apache Spark

Compare the Top Data Warehouse Software that integrates with Apache Spark as of December 2025

This a list of Data Warehouse software that integrates with Apache Spark. Use the filters on the left to add additional filters for products that have integrations with Apache Spark. View the products that work with Apache Spark in the table below.

What is Data Warehouse Software for Apache Spark?

Data warehouse software helps organizations store, manage, and analyze large volumes of data from different sources in a centralized, structured repository. These systems support the extraction, transformation, and loading (ETL) of data from multiple databases and applications into the warehouse, ensuring that the data is cleaned, formatted, and organized for business intelligence and analytics purposes. Data warehouse software typically includes features such as data integration, querying, reporting, and advanced analytics to help businesses derive insights from historical data. It is commonly used for decision-making, forecasting, and performance tracking, making it essential for industries like finance, healthcare, retail, and manufacturing. Compare and read user reviews of the best Data Warehouse software for Apache Spark currently available using the table below. This list is updated regularly.

  • 1
    Archon Data Store

    Archon Data Store

    Platform 3 Solutions

    Archon Data Store is a next-generation enterprise data archiving platform designed to help organizations manage rapid data growth, reduce legacy application costs, and meet global compliance standards. Built on a modern Lakehouse architecture, Archon Data Store unifies data lakes and data warehouses to deliver secure, scalable, and analytics-ready archival storage. The platform supports on-premise, cloud, and hybrid deployments with AES-256 encryption, audit trails, metadata governance, and role-based access control. Archon Data Store offers intelligent storage tiering, high-performance querying, and seamless integration with BI tools. It enables efficient application decommissioning, cloud migration, and digital modernization while transforming archived data into a strategic asset. With Archon Data Store, organizations can ensure long-term compliance, optimize storage costs, and unlock AI-driven insights from historical data.
  • 2
    BigLake

    BigLake

    Google

    BigLake is a storage engine that unifies data warehouses and lakes by enabling BigQuery and open-source frameworks like Spark to access data with fine-grained access control. BigLake provides accelerated query performance across multi-cloud storage and open formats such as Apache Iceberg. Store a single copy of data with uniform features across data warehouses & lakes. Fine-grained access control and multi-cloud governance over distributed data. Seamless integration with open-source analytics tools and open data formats. Unlock analytics on distributed data regardless of where and how it’s stored, while choosing the best analytics tools, open source or cloud-native over a single copy of data. Fine-grained access control across open source engines like Apache Spark, Presto, and Trino, and open formats such as Parquet. Performant queries over data lakes powered by BigQuery. Integrates with Dataplex to provide management at scale, including logical data organization.
    Starting Price: $5 per TB
  • 3
    Apache Doris

    Apache Doris

    The Apache Software Foundation

    Apache Doris is a modern data warehouse for real-time analytics. It delivers lightning-fast analytics on real-time data at scale. Push-based micro-batch and pull-based streaming data ingestion within a second. Storage engine with real-time upsert, append and pre-aggregation. Optimize for high-concurrency and high-throughput queries with columnar storage engine, MPP architecture, cost based query optimizer, vectorized execution engine. Federated querying of data lakes such as Hive, Iceberg and Hudi, and databases such as MySQL and PostgreSQL. Compound data types such as Array, Map and JSON. Variant data type to support auto data type inference of JSON data. NGram bloomfilter and inverted index for text searches. Distributed design for linear scalability. Workload isolation and tiered storage for efficient resource management. Supports shared-nothing clusters as well as separation of storage and compute.
    Starting Price: Free
  • 4
    Stackable

    Stackable

    Stackable

    The Stackable data platform was designed with openness and flexibility in mind. It provides you with a curated selection of the best open source data apps like Apache Kafka, Apache Druid, Trino, and Apache Spark. While other current offerings either push their proprietary solutions or deepen vendor lock-in, Stackable takes a different approach. All data apps work together seamlessly and can be added or removed in no time. Based on Kubernetes, it runs everywhere, on-prem or in the cloud. stackablectl and a Kubernetes cluster are all you need to run your first stackable data platform. Within minutes, you will be ready to start working with your data. Configure your one-line startup command right here. Similar to kubectl, stackablectl is designed to easily interface with the Stackable Data Platform. Use the command line utility to deploy and manage stackable data apps on Kubernetes. With stackablectl, you can create, delete, and update components.
    Starting Price: Free
  • 5
    Querona

    Querona

    YouNeedIT

    We make BI & Big Data analytics work easier and faster. Our goal is to empower business users and make always-busy business and heavily loaded BI specialists less dependent on each other when solving data-driven business problems. If you have ever experienced a lack of data you needed, time to consuming report generation or long queue to your BI expert, consider Querona. Querona uses a built-in Big Data engine to handle growing data volumes. Repeatable queries can be cached or calculated in advance. Optimization needs less effort as Querona automatically suggests query improvements. Querona empowers business analysts and data scientists by putting self-service in their hands. They can easily discover and prototype data models, add new data sources, experiment with query optimization and dig in raw data. Less IT is needed. Now users can get live data no matter where it is stored. If databases are too busy to be queried live, Querona will cache the data.
  • 6
    Vaultspeed

    Vaultspeed

    VaultSpeed

    Experience faster data warehouse automation. The Vaultspeed automation tool is built on the Data Vault 2.0 standard and a decade of hands-on experience in data integration projects. Get support for all Data Vault 2.0 objects and implementation options. Generate quality code fast for all scenarios in a Data Vault 2.0 integration system. Plug Vaultspeed into your current set-up and leverage your investments in tools and knowledge. Get guaranteed compliance with the latest Data Vault 2.0 standard. We are in continuous interaction with Scalefree, the body of knowledge for the Data Vault 2.0 community. The Data Vault 2.0 modelling approach strips the model components to their bare minimum so they can be loaded through the same loading pattern (repeatable pattern) and have the same database structure. Vaultspeed works with a template system, which understands the structure of the object types, and easy-to-set configuration parameters.
    Starting Price: €600 per user per month
  • 7
    Actian Avalanche
    Actian Avalanche is a fully managed hybrid cloud data warehouse service designed from the ground up to deliver high performance and scale across all dimensions – data volume, concurrent user, and query complexity – at a fraction of the cost of alternative solutions. It is a true hybrid platform that can be deployed on-premises as well as on multiple clouds, including AWS, Azure, and Google Cloud, enabling you to migrate or offload applications and data to the cloud at your own pace. Actian Avalanche delivers the best price-performance in the industry outof-the-box without DBA tuning and optimization techniques. For the same cost as alternative solutions, you can benefit from substantially better performance or chose the same performance for significantly lower cost. For example, Avalanche provides up to 6x the price-performance advantage over Snowflake as measured by GigaOm’s TPC-H industry standard benchmark and even more against many of the appliance vendors.
  • 8
    Lyftrondata

    Lyftrondata

    Lyftrondata

    Whether you want to build a governed delta lake, data warehouse, or simply want to migrate from your traditional database to a modern cloud data warehouse, do it all with Lyftrondata. Simply create and manage all of your data workloads on one platform by automatically building your pipeline and warehouse. Analyze it instantly with ANSI SQL, BI/ML tools, and share it without worrying about writing any custom code. Boost the productivity of your data professionals and shorten your time to value. Define, categorize, and find all data sets in one place. Share these data sets with other experts with zero codings and drive data-driven insights. This data sharing ability is perfect for companies that want to store their data once, share it with other experts, and use it multiple times, now and in the future. Define dataset, apply SQL transformations or simply migrate your SQL data processing logic to any cloud data warehouse.
  • 9
    Onehouse

    Onehouse

    Onehouse

    The only fully managed cloud data lakehouse designed to ingest from all your data sources in minutes and support all your query engines at scale, for a fraction of the cost. Ingest from databases and event streams at TB-scale in near real-time, with the simplicity of fully managed pipelines. Query your data with any engine, and support all your use cases including BI, real-time analytics, and AI/ML. Cut your costs by 50% or more compared to cloud data warehouses and ETL tools with simple usage-based pricing. Deploy in minutes without engineering overhead with a fully managed, highly optimized cloud service. Unify your data in a single source of truth and eliminate the need to copy data across data warehouses and lakes. Use the right table format for the job, with omnidirectional interoperability between Apache Hudi, Apache Iceberg, and Delta Lake. Quickly configure managed pipelines for database CDC and streaming ingestion.
  • 10
    IBM watsonx.data
    Put your data to work, wherever it resides, with the open, hybrid data lakehouse for AI and analytics. Connect your data from anywhere, in any format, and access through a single point of entry with a shared metadata layer. Optimize workloads for price and performance by pairing the right workloads with the right query engine. Embed natural-language semantic search without the need for SQL, so you can unlock generative AI insights faster. Manage and prepare trusted data to improve the relevance and precision of your AI applications. Use all your data, everywhere. With the speed of a data warehouse, the flexibility of a data lake, and special features to support AI, watsonx.data can help you scale AI and analytics across your business. Choose the right engines for your workloads. Flexibly manage cost, performance, and capability with access to multiple open engines including Presto, Presto C++, Spark Milvus, and more.
  • 11
    Databricks Data Intelligence Platform
    The Databricks Data Intelligence Platform allows your entire organization to use data and AI. It’s built on a lakehouse to provide an open, unified foundation for all data and governance, and is powered by a Data Intelligence Engine that understands the uniqueness of your data. The winners in every industry will be data and AI companies. From ETL to data warehousing to generative AI, Databricks helps you simplify and accelerate your data and AI goals. Databricks combines generative AI with the unification benefits of a lakehouse to power a Data Intelligence Engine that understands the unique semantics of your data. This allows the Databricks Platform to automatically optimize performance and manage infrastructure in ways unique to your business. The Data Intelligence Engine understands your organization’s language, so search and discovery of new data is as easy as asking a question like you would to a coworker.
  • 12
    Apache Kylin

    Apache Kylin

    Apache Software Foundation

    Apache Kylin™ is an open source, distributed Analytical Data Warehouse for Big Data; it was designed to provide OLAP (Online Analytical Processing) capability in the big data era. By renovating the multi-dimensional cube and precalculation technology on Hadoop and Spark, Kylin is able to achieve near constant query speed regardless of the ever-growing data volume. Reducing query latency from minutes to sub-second, Kylin brings online analytics back to big data. Kylin can analyze 10+ billions of rows in less than a second. No more waiting on reports for critical decisions. Kylin connects data on Hadoop to BI tools like Tableau, PowerBI/Excel, MSTR, QlikSense, Hue and SuperSet, making the BI on Hadoop faster than ever. As an Analytical Data Warehouse, Kylin offers ANSI SQL on Hadoop/Spark and supports most ANSI SQL query functions. Kylin can support thousands of interactive queries at the same time, thanks to the low resource consumption of each query.
  • 13
    Apache Hudi

    Apache Hudi

    Apache Corporation

    Hudi is a rich platform to build streaming data lakes with incremental data pipelines on a self-managing database layer, while being optimized for lake engines and regular batch processing. Hudi maintains a timeline of all actions performed on the table at different instants of time that helps provide instantaneous views of the table, while also efficiently supporting retrieval of data in the order of arrival. A Hudi instant consists of the following components. Hudi provides efficient upserts, by mapping a given hoodie key consistently to a file id, via an indexing mechanism. This mapping between record key and file group/file id, never changes once the first version of a record has been written to a file. In short, the mapped file group contains all versions of a group of records.
  • 14
    VeloDB

    VeloDB

    VeloDB

    Powered by Apache Doris, VeloDB is a modern data warehouse for lightning-fast analytics on real-time data at scale. Push-based micro-batch and pull-based streaming data ingestion within seconds. Storage engine with real-time upsert、append and pre-aggregation. Unparalleled performance in both real-time data serving and interactive ad-hoc queries. Not just structured but also semi-structured data. Not just real-time analytics but also batch processing. Not just run queries against internal data but also work as a federate query engine to access external data lakes and databases. Distributed design to support linear scalability. Whether on-premise deployment or cloud service, separation or integration of storage and compute, resource usage can be flexibly and efficiently adjusted according to workload requirements. Built on and fully compatible with open source Apache Doris. Support MySQL protocol, functions, and SQL for easy integration with other data tools.
  • 15
    Baidu Palo

    Baidu Palo

    Baidu AI Cloud

    Palo helps enterprises to create the PB-level MPP architecture data warehouse service within several minutes and import the massive data from RDS, BOS, and BMR. Thus, Palo can perform the multi-dimensional analytics of big data. Palo is compatible with mainstream BI tools. Data analysts can analyze and display the data visually and gain insights quickly to assist decision-making. It has the industry-leading MPP query engine, with column storage, intelligent index,and vector execution functions. It can also provide in-library analytics, window functions, and other advanced analytics functions. You can create a materialized view and change the table structure without the suspension of service. It supports flexible and efficient data recovery.
  • Previous
  • You're on page 1
  • Next