Compare the Top Data Science Software that integrates with R as of September 2025

This a list of Data Science software that integrates with R. Use the filters on the left to add additional filters for products that have integrations with R. View the products that work with R in the table below.

What is Data Science Software for R?

Data science software is a collection of tools and platforms designed to facilitate the analysis, interpretation, and visualization of large datasets, helping data scientists derive insights and build predictive models. These tools support various data science processes, including data cleaning, statistical analysis, machine learning, deep learning, and data visualization. Common features of data science software include data manipulation, algorithm libraries, model training environments, and integration with big data solutions. Data science software is widely used across industries like finance, healthcare, marketing, and technology to improve decision-making, optimize processes, and predict trends. Compare and read user reviews of the best Data Science software for R currently available using the table below. This list is updated regularly.

  • 1
    Plotly Dash
    Dash & Dash Enterprise let you build & deploy analytic web apps using Python, R, and Julia. No JavaScript or DevOps required. Through Dash, the world's largest companies elevate AI, ML, and Python analytics to business users at 5% the cost of a full-stack development approach. Deliver apps and dashboards that run advanced analytics: ML, NLP, forecasting, computer vision and more. Work in the languages you love: Python, R, and Julia. Reduce costs by migrating legacy, per-seat licensed software to Dash Enterprise's open-core, unlimited end-user pricing model. Move faster by deploying and updating Dash apps without an IT or DevOps team. Create pixel-perfect dashboards & web apps, without writing any CSS. Scale effortlessly with Kubernetes. Support mission-critical Python applications with high availability.
  • 2
    Domino Enterprise MLOps Platform
    The Domino platform helps data science teams improve the speed, quality, and impact of data science at scale. Domino is open and flexible, empowering professional data scientists to use their preferred tools and infrastructure. Data science models get into production fast and are kept operating at peak performance with integrated workflows. Domino also delivers the security, governance and compliance that enterprises expect. The Self-Service Infrastructure Portal makes data science teams become more productive with easy access to their preferred tools, scalable compute, and diverse data sets. The Integrated Model Factory includes a workbench, model and app deployment, and integrated monitoring to rapidly experiment, deploy the best models in production, ensure optimal performance, and collaborate across the end-to-end data science lifecycle. The System of Record allows teams to easily find, reuse, reproduce, and build on any data science work to amplify innovation.
  • 3
    Posit

    Posit

    Posit

    At Posit, our goal is to make data science more open, intuitive, accessible, and collaborative. We provide tools that make it easy for individuals, teams, and enterprises to leverage powerful analytics and gain the insights they need to make a lasting impact. From the beginning, we’ve invested in open-source software like the RStudio IDE, Shiny, and tidyverse. Because we believe in putting the power of data science tools in the hands of everyone. We develop R and Python-based tools to help you produce higher-quality analysis faster. Securely share data-science applications across your team and the enterprise. Our code is your code. Build on it. Share it. Improve people’s lives with it. Take the time and effort out of uploading, storing, accessing, and sharing your work. We love hearing about the amazing work being done with our tools around the world. And we really love sharing those stories.
  • 4
    JetBrains Datalore
    Datalore is a collaborative data science and analytics platform aimed at boosting the whole analytics workflow and making work with data enjoyable for both data scientists and data savvy business teams across the enterprise. Keeping a major focus on data teams workflow, Datalore offers technical-savvy business users the ability to work together with data teams, using no-code or low-code together with the power of Jupyter notebooks. Datalore enables analytical self-service for business users, enabling them to work with data using SQL and no-code cells, build reports and deep dive into data. It offloads the core data team with simple tasks. Datalore enables analysts and data scientists to share results with ML Engineers. You can run your code on powerful CPUs or GPUs and collaborate with your colleagues in real-time.
    Starting Price: $19.90 per month
  • 5
    Intel Tiber AI Studio
    Intel® Tiber™ AI Studio is a comprehensive machine learning operating system that unifies and simplifies the AI development process. The platform supports a wide range of AI workloads, providing a hybrid and multi-cloud infrastructure that accelerates ML pipeline development, model training, and deployment. With its native Kubernetes orchestration and meta-scheduler, Tiber™ AI Studio offers complete flexibility in managing on-prem and cloud resources. Its scalable MLOps solution enables data scientists to easily experiment, collaborate, and automate their ML workflows while ensuring efficient and cost-effective utilization of resources.
  • 6
    Visplore

    Visplore

    Visplore

    Visplore is a plug-and-play software solution for rapid advanced analytics of process and asset data. Easy-to-use visualization and automated analytics provide process and maintenance engineers with answers for data-driven decision-making. Increase the speed and value of data analytics by 10x – 100x and master the digital transformation with your subject-matter experts. Highlights: - Work with millions of data records without delay (zooming etc.). - Select, cleanse, label and export data interactively - Connect with Python, R, Matlab, CSV, databases and OSISoft PI to get started in 1 minute.
  • 7
    JetBrains DataSpell
    Switch between command and editor modes with a single keystroke. Navigate over cells with arrow keys. Use all of the standard Jupyter shortcuts. Enjoy fully interactive outputs – right under the cell. When editing code cells, enjoy smart code completion, on-the-fly error checking and quick-fixes, easy navigation, and much more. Work with local Jupyter notebooks or connect easily to remote Jupyter, JupyterHub, or JupyterLab servers right from the IDE. Run Python scripts or arbitrary expressions interactively in a Python Console. See the outputs and the state of variables in real-time. Split Python scripts into code cells with the #%% separator and run them individually as you would in a Jupyter notebook. Browse DataFrames and visualizations right in place via interactive controls. All popular Python scientific libraries are supported, including Plotly, Bokeh, Altair, ipywidgets, and others.
    Starting Price: $229
  • 8
    Zerve AI

    Zerve AI

    Zerve AI

    Merging the best of a notebook and an IDE into one integrated coding environment, experts can explore their data and write stable code at the same time with fully automated cloud infrastructure. Zerve’s data science development environment gives data science and ML teams a unified space to explore, collaborate, build, and deploy data science & AI projects like never before. Zerve offers true language interoperability, meaning that as well as being able to use Python, R, SQL, or Markdown all in the same canvas, users can connect these code blocks to each other. No more long-running code blocks or containers, with Zerve enjoying unlimited parallelization at any stage of the development journey. Analysis artifacts are automatically serialized, versioned, stored, and preserved for later use, meaning easily changing a step in the data flow without needing to rerun any preceding steps. Fine-grained selection of compute resources and extra memory for complex data transformation.
  • 9
    Zepl

    Zepl

    Zepl

    Sync, search and manage all the work across your data science team. Zepl’s powerful search lets you discover and reuse models and code. Use Zepl’s enterprise collaboration platform to query data from Snowflake, Athena or Redshift and build your models in Python. Use pivoting and dynamic forms for enhanced interactions with your data using heatmap, radar, and Sankey charts. Zepl creates a new container every time you run your notebook, providing you with the same image each time you run your models. Invite team members to join a shared space and work together in real time or simply leave their comments on a notebook. Use fine-grained access controls to share your work. Allow others have read, edit, and run access as well as enable collaboration and distribution. All notebooks are auto-saved and versioned. You can name, manage and roll back all versions through an easy-to-use interface, and export seamlessly into Github.
  • 10
    IBM SPSS Modeler
    IBM SPSS Modeler is a leading visual data science and machine learning (ML) solution designed to help enterprises accelerate time to value by speeding up operational tasks for data scientists. Organizations worldwide use it for data preparation and discovery, predictive analytics, model management and deployment, and ML to monetize data assets. IBM SPSS Modeler automatically transforms data into the best format for the most accurate predictive modeling. It now only takes a few clicks for you to analyze data, identify fixes, screen out fields and derive new attributes. Leverage IBM SPSS Modeler’s powerful graphics engine to bring your insights to life. The smart chart recommender finds the perfect chart for your data from among dozens of options, so you can share your insights quickly and easily using compelling visualizations.
  • Previous
  • You're on page 1
  • Next